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This paper evaluates transverse normal stress p
zz

e!ect on vibration of
multilayered structures. To this purpose a mixed plate model initially introduced
by Toledano and Murakami has been extended to dynamics analysis of double
curved shells. These models allow both continuous interlaminar transverse shear
and normal stresses as well as the zigzag form of the displacement distribution in
the shell thickness directions to be modelled. Governing equations have been
derived by employing a Reissner's mixed theorem. Classical models on the basis of
standard displacement formulations have been considered for comparison
purposes. The evaluations of transverse stress e!ects have been conducted by
comparing constant, linear and higher order distributions of transverse
displacement components in the plate thickness directions. Free vibrational
response of layered, simply supported plates, cylindrical and spherical shells made
of isotropic as well as orthotropic layers has been analyzed. The numerical
investigation carried out and comparison with earlier results has concluded that:

1. The possibility of describing a priori interlaminar continuous transverse
normal stress p

zz
makes the mixed theories more attractive with respect to other

available modelling.
2. Any re"nements of classical models are meaningless, unless the e!ects of

interlaminar continuous transverse shear and normal stresses are both taken into
account in a multilayered shell theory. ( 1999 Academic Press
1. INTRODUCTION

Koiter in his lecture on two-dimensional modelling of traditional isotropic shells
[1], based on energy considerations, stated that a re,nement of ¸ove1s ,rst
approximation theory is indeed meaningless, in general, unless the e+ects of transverse
shear and normal stresses are taken into account at the same time. More general and
systematic substantiation of Koiter's conclusion can be referred to in the books by
Goldenvaizer [2] and Cicala [3] in which the the method of asymptotic expansion
of the three-dimensional governing equations is employed.

Two-dimensional modellings of multilayered structures (such as laminated
constructions, sandwich panels, layered structures used as thermal protection or
intelligent structural systems embedding piezo-layers) require amendments to
Koiter's recommendation. Among these, the inclusion of continuity of
0022-460X/99/350803#27 $30.00/0 ( 1999 Academic Press
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displacements } zigzag e!ects } and of transverse shear and normal stresses
} interlaminar continuity } at the interface between two adjacent layers are some
of the amendments necessary. The role played by zigzag e!ects and interlaminar
continuity has been con"rmed by many three-dimensional analyses of layered
plates [4}8] and shells [9}14]. Due to the increasing number of parameters
(thickness, number of layers and mechanical properties such as the value of
the orthotropic ratio of the lamina) the application of asymptotic techniques
[15}23] to layered structures has not lead to conclusions as exhaustive as those
for the isotropic one layer cases [3]. Among these, the very recent treatments
presented by Sutyrin [23] are of particular interest. As far as possible, the
shear corrected theories in [23] are derived from variational asymptotic
analysis.

Exhaustive overviews on classical and re"ned models of multilayered structures
have been reported in many published review articles. These include the papers by
Grigolyuk and Kulikov [24], Kapania and Raciti [25], Kapania [26], Noor et al.
[27}29] and Soldatos and Timarci [30]. Among the re"ned theories a convenient
distinction can be made between models in which the number of the unknown
variables is independent or dependent on the number of the constitutive layers of
the shell. Following Reddy [31], we assign the name ESLM (Equivalent Single
Layer Models) to the "rst grouping while LWM (Layer Wise Model) is used to
denote the others. Early [32}35] and more recent [36}42] LWMs have shown the
superiority of layer-wise approaches over ESL approaches to predict accurately
static and dynamic response of thick and very thick structures. The best results
have been obtained by mixed LWMs [40}42] which a priori describe interlaminar
continuous transverse normal stress. On the other hand, LWMs are
computationally expensive and the use of ESLMs is preferred in most practical
applications. In this paper, attention is restricted to those ESLMs which, according
to the Koiter's recommendation, address both transverse shear paz , pbz and normal
stress p

zz
e!ects.

The work by Hildebrand et al., [43] and by Lo et al., [44] are examples of
classical analyses in which higher order displacement models have been employed
and p

zz
is taken into account. These types of theories do not include interlaminar

continuity for the transverse shear and normal stresses nor allow the zigzag form
for the displacement variables. On the other hand, transverse normal stress has
been discarded in most of the re"ned ESL analyses [45}51]. In fact, the intrinsic
coupling experienced by orthotropic material between in-plane paa , pbb and
out-of-plane p

zz
stresses [see equation (3)] makes the a priori ful"llment of

p
zz

interlaminar equilibria di$cult. Interlaminar equilibria are usually restricted to
the transverse shear components while the zigzag form appears only in the two
in-plane components of the displacement. That is, Koiter's recommendation is not
taken into account by the latter type of theories.

To allow interlaminar continuous transverse stresses (both shear and normal
components) Toledano and Murakami [52], on the basis of a Reissner mixed
variational theorem [53], proposed a mixed theory which introduced two
independent interlaminar continuous "elds for the displacements and transverse
stress variables. The displacement "eld was assumed at a multilayered level while
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stress variables were considered independent in each layer. The possibility of
expressing stress variables in terms of the displacement variables was discussed
in reference [54]. Shell applications, which were developed by Bhaskar and
Varadan [55] and Jing and Tzeng [56] were restricted to static analysis and
neglected p

zz
.

In the scenarios above described, the present work has the following aim: to
evaluate the e!ects of p

zz
on the vibrational response of plate and shells in cases of

both mixed [52] and classical modellings [43]. Such an evaluation would serve to
assess the many re"ned ESLMs which discard p

zz
. To this purpose the mixed

theory by Toledano and Murakami [52] which had been originally developed for
the static analysis of plates, is extended in this paper to dynamic analysis of shells.
Related classical models based on the standard displacement formulation are
derived for comparison purposes. Transverse stress e!ect has been evaluated by
allowing di!erent polynomials of order N in the assumed expansions of
displacement and/or stress unknowns. Further, a layer-wise model which has been
shown ([40}42]) to give a quasi-three-dimensional description of multilayered
structures is also introduced. This model is used as a reference solution to assess
simpli"ed ESLM analyses. All these models are written in this paper in a uni"ed
form by referring to techniques developed by the author in earlier works [40}42,
54, 57, 58].

2. PRELIMINARY

The salient features of shell geometry are shown in Figure 1. A laminated shell
composed of N

l
layers is considered. The integer k, used as superscript or subscript,

denotes the layer number which starts from the shell bottom. The layer geometry is
denoted by the same symbols as those used for the whole multilayered shell and
vice-versa. a

k
and b

k
are the curvilinear orthogonal co-ordinates (coinciding with

principal curvature lines) on the layer reference surface X
k

(middle surface of the
k-layer). z

k
denotes the rectilinear co-ordinate in the direction normal to X

k
. C

k
is

the X
k

boundary: Cg
k

and Cm
k

are those parts of C
k

on which geometrical and
mechanical boundary conditions are imposed, respectively; these boundaries are
considered parallel to a

k
or b

k
. The further dimensionless thickness co-ordinate is

introduced, f
k
"2z

k
/h

k
, where h

k
denotes the thickness in the A

k
domain. The

following relation holds for the orthogonal system of curvilinear co}ordinates for
the square of line element, for the area of an in"nitesimal rectangle on X

k
, and for

an in"nitesimal volume, respectively [59]:

ds2
k
"Hkada2

k
#Hkbdb2

k
#Hk

z
dz2

k
,

dX
k
"HkaHkbda

k
db

k
, (1)

d<"HkaHkbHk
z
da

k
db

k
dz

k

where Hka"Ak(1#z
k
/Rka), Hkb"Bk(1#z

k
/Rkb), Hk

z
"1. Rka and Rkb are the radii of

curvature in the directions of a
k
and b

k
respectively. Ak and Bk are the coe$cients of

the "rst fundamental form of X . For the sake of simplicity here attention is

k



Figure 1. Geometry and notation of multilayered shells.
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restricted to a shell with a constant curvature, i.e., double-curved shell (cylindrical,
spherical, toroidal geometries) for which Ak"Bk"1.

The laminae are considered to be homogeneous and to operate in the linear
elastic range. By employing sti!ness coe$cients, Hooke's law for the anisotropic
k-lamina is written in the form p

i
"CI

ij
e
j
where the sub-indices i and j, ranging from

1 to 6, stand for the index couples 11, 22, 33, 13, 23 and 12 respectively. The
material is assumed to be orthotropic, as speci"ed, by: CI

14
"CI

24
"CI

34
"CI

64
"CI

15
"CI

25
"CI

35
"CI

65
"0. This implies that pkaz and pkbz depend only on

ekaz and ekbz. In matrix form,

rk
pH$

"C3 k
pp

ek
pG

#C3 k
pn

ek
nG

,
(2)

rk
nH$

"C3 k
np

ek
pG
#C3 k

nn
ek
nG

,
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where

C3 k
pp
"

CI k
11

CI k
12

CI k
16

CI k
12

CI k
22

CI k
26

CI k
16

CI k
26

CI k
66

, C3 k
pn
"C3 kT

np
"

0 0 CI k
13

0 0 CI k
23

0 0 CI k
36

,

C3 k
nn
"

CI k
44

CI k
45

0

CI k
45

CI k
55

0

0 0 CI k
66

.

Bold letters denote arrays. The superscript T signi"es array transposition. It should
be noted that p

zz
couples the in-plane and out-of-plane stress and strain

components. The subscripts n and p denote transverse (out-of-plane, normal) and
in-plane values respectively. Therefore rk

p
"Mpkaa, pkbb, pkabN, rk

n
"Mpkaz, pkbz, pk

zz
N and

ek
p
"Mekaa, ekbb, ekabN, ek

n
"Mekaz, ekbz, ekzzN. Subscript H denotes stresses evaluated by

Hooke's law while subscript G denotes strain from the geometrical relation in
equation (4). The sub-subscript d signi"es values employed in the displacement
formulation. For the mixed solution procedure adopted, the stress}strain
relationships are conveniently put in the following mixed form [60]

rk
pH

"Ck
pp

ek
pG

#Ck
pn

rk
nM

,
(3)

ek
nH

"Ck
np

ek
pG

#Ck
nn

rk
nM

,

where both sti!ness and compliance coe$cients are employed. The subscript
M states that the transverse stresses are those of the assumed model (see the next
section). The relation between the arrays of coe$cients in the two forms of Hooke's
law is simply found

Ck
pp
"C3 k

pp
!C3 k

pn
C3 k~Ç

nn
C3 k

np
, Ck

pn
"C3 k

pn
C3 k~Ç

nn
,

Ck
np
"!C3 k~Ç

nn
C3 k

np
, Ck

nn
"C3 k~Ç

nn
.

Superscript !1 denotes an inversion of the array.
As the model is restricted to the small deformation "eld, the strain components

ek
p
, ek

n
are linearly related to the displacements uk (uk"uka, ukb, uk

z
), according to the

following geometrical relations [59]:

ek
pG

"D
p
uk#A

p
uk, ek

nG
"D

nX
uk#A

n
uk#D

nz
uk, (4)

where

D
p
"

La
Hka

0 0

0
Lb
Hkb

0

Lb
Hkb

La
Hka

0

, A
p
"

0 0
1

HkaRka
0 0

1
HkbRkb

0 0 0

,
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D
nX
"

0 0
La
Hka

0 0
Lb
Hkb

0 0 0

, A
n
"

!

1
HkaRka

0 0

0 !

1
HkbRkb

0

0 0 0

,

D
nz
"

L
z

0 0

0 L
z

0

0 0 L
z

.

No assumption has been made for those terms which are divided by Hka and Hkb are
not expanded as Taylor series [57, 59]. That is, curvature terms have been entirely
retained in the following developments.

3. DISPLACEMENT AND STRESS ASSUMPTION

3.1. CLASSICAL MODELS

Firstly, classical models are considered. As usual, the displacement variables are
expressed in Taylor series in terms of unknown variables which are de"ned on the
plate reference surface X,

u"u
0
#zru

r
, r"1, 2, 2, N, (5)

where N is a free parameter of the model. Di!erent values for di!erent modellings
and di!erent displacement and stress components are assumed. The repeated
r indices are summed over their ranges. Subscript 0 denotes displacement values
with correspondence to the plate reference surface X. Linear and higher order
distributions in the z-direction are introduced by the r-polynomials. The assumed
models can be written with the same notations that will be adopted for the
layer-wise stress model (equation (10)). Equation (5) is therefore rewritten

u"F
t
u
t
#F

b
u
b
#F

r
u
r
"Fquq, q"t, b, r, r"1, 2,

2
, N!1. (6)

Subscript b denotes values related to the plate reference surface X (u
b
"u

0
) while

subscript t refers to the highest term (u
t
"u

N
). The Fq functions assume the

following explicit form:

F
b
"1, F

t
"zN, F

r
"zr, r"1, 2, 2, N!1. (7)

Transverse stress p
zz

and strain e
zz

e!ects are discarded by forcing a constant
(N"0) distribution for the the u

z
-expansion.

3.2. MIXED MODELS

The zigzag form of the displacement "elds can be reproduced in equation (5) by
employing the Murakami theory [61]. Within the framework of the ESL
description and according to references [52, 61] a zigzag term can be introduced
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into equation (5) (see Figure 2):

uk"u
0
#(!1)kf

k
u
Z
#zru

r
, r"1, 2, 2, N. (8)

Subscript Z refers to the introduced zigzag term. With uni"ed notations equation
(6) becomes

uk"F
t
u
t
#F

b
u
b
#F

r
u
r
"Fquq, q"t, b, r, r"1, 2, 2, N (9)

Subscript t refers to the introduced zigzag term (u
t
"u

Z
, F

t
"(!1)kf

k
). It should be

noticed that F
t
assumes the values $1 in correspondence to the bottom and the top

interface of the k-layer (see Figure 2).
The thickness expansion used for displacement variables in equation (9) is not

suitable for the transverse stress cases. For instance, homogeneous top}bottom
plate surface conditions cannot be imposed. Transverse stresses are therefore herein
described by means of the layer-wise description [52, 54, 61]:

rk
nM

"F
t
rk
nt
#F

b
rk
nb
#F

r
rk
nr
"Fqrk

nq, q"t, b, r,

r"2, 3, 2, N, k"1, 2, 2, N
l
. (10)
Figure 2. Displacement and stress "elds assumed for the employed models. (a) LWM case. (b)
ESLM case.
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In contrast to equation (9), it is now intended that the subscripts t and b denote
values related to the layer top and bottom surface respectively. They consist of the
linear part of the expansion. The thickness functions Fq (fk) have now been de"ned
at the k-layer level:

F
t
"

P
0
#P

1
2

, F
b
"

P
0
!P

1
2

, F
r
"P

r
!P

r~2
, r"2, 3, 2, N. (11)

in which P
j
"P

j
(f

k
) is the Legendre polynomial of the j-order de"ned in the

f
k
-domain: !1)f

k
)1. The parabolic, cubic and fourth order stress "eld

equation (10) will be associated to linear, parabolic and cubic displacement "eld in
equation (9), respectively, in the numerical investigations. The related polynomials
are

P
0
"1, P

1
"f

k
, P

2
"(3f2

k
!1)/2, P

3
"

5f3
k

2
!

3f
k

2
,

P
4
"

35f4
k

8
!

15f2
k

4
#

3
8

The functions selected have the following properties:

f
k
"G

1: F
t
"1, F

b
"0, F

r
"0,

!1: F
t
"0, F

b
"1, F

r
"0.

(12)

The top and bottom values have been used as unknown variables. The interlaminar
transverse shear and normal stress continuity can therefore be easily linked:

rk
nt
"r(k`1)

nb
, k"1, N

l
!1. (13)

In those cases in which the top/bottom-shell stress values are prescribed (zero
or imposed values), the following additional equilibrium conditions must be
accounted for:

r1
nb
"r6

nb
, rNl

nt
"r6

nt
, (14)

where the over-bar is the imposed value in correspondence to the plate boundary
surfaces. Examples of linear and higher order "elds have been plotted in Figure 2.
The stress variables could be eliminated by employing the weak form of Hooke1s law
proposed in reference [54].

3.3. LAYER-WISE MIXED MODEL

In the author's previous papers [40}42, 54], two independent layer-wise "elds
are assumed for both displacement and stress variables as in equation (10):

uk"F
t
uk
t
#F

b
uk
b
#F

r
uk
r
"Fqukq, q"t, b, r,

r"2, 3, 2, N, (15)
rk
nM

"F
t
rk

nt
#F

b
rk
nb
#F

r
rk
nr
"Fqrk

nq , k"1, 2, 2, N
l
.
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In addition to equation (13) the compatibility of the displacement reads

uk
t
"u(k`1)

b
, k"1, N

l
!1. (16)

4. GOVERNING EQUATIONS

In order to write all the models mentioned in the previous section it is convenient
to refer to all the stress and displacement variables at the k-layer level, i.e. to use
a layer-wise description. ESL cases are achieved by writing the governing equations
at the multilayered plate level.

The displacement approach is formulated in terms of uk by variationally
imposing the equilibrium via the principle of virtual displacements. In the dynamic
case this establishes

Nl

+
k/1
PX

k
P
Ak

(dek
p
T
G
rk
pH$

#dek
n
T
G
rk
nH$

) dX
k
dz"

Nl

+
k/1
PX

k
P
Ak

okdukuK k d<#d¸e, (17)

where d signi"es virtual variations and o
k
denotes mass density. The variation of the

internal work has been split into in-plane and out-of-plane parts and involves the
stress obtained from Hooke's Law and the strain from the geometrical relations.
d¸

e
is the virtual variation of the work done by the external layer-forces

pk (Mpk
x
, pk

y
, pk

z
N).

In the mixed case, the equilibrium and compatibility are both formulated in
terms of the uk and rk

n
unknowns via Reissner's mixed variational theorem RMVT

[53]

Nl

+
k/1

P)
k
P
Ak

(dek
p
T
G
rk
pH

#dek
n
T
G
rk
nM

#drk
n
T
M

(ek
nG
!ek

nH
)) dX

k
dz

"

Nl

+
k/1

PX
k
P
Ak

okdukuK kd<#d¸e.

The LHS includes the variations of the internal work in the shell: the "rst two terms
come from the displacement formulation, they will lead to variationally consistent
equilibrium conditions, the third &&mixed'' term variationally enforces the
compatibility of the transverse strains components.

4.1. EQUILIBRIUM AND CONSTITUTIVE EQUATIONS FOR THE k-LAYERS: MIXED CASE

In contrast with most of the available shell literature and to the author's previous
works related to plates, in the present analysis the de"nition of stress or strain
resultants in the shell thickness direction has been omitted. Such a choice is mainly
due to the wish to preserve the terms Hka , Hkb in the strain equation (4). In fact, if the
Love's approximation Hka"Hkb"1 is not introduced, as is the case in the present
article, the de"nition of stress and strain resultants remains still possible, but
according to the author's opinion, not convenient. As a result, together with the
derivations of this paper, the governing equations will be directly written in terms
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of the introduced stress and displacement variables. By using the array formula for
the integration by parts similar to those introduced in reference [42] the RMVT
work equations equation (18) assumes the following form:

Nl

+
k/1

APX
k

MdukTq [(!FqDT
p
#FqAT

p
) C

pp
(F

s
D

p
#F

s
A

p
) uk

s

#(!FqDT
p
#FqAT

p
) C

pn
F

s
rk
ns
#(!FqDT

nX#FqAT
n
#Fqz ) F

s
rk
ns
]

]drkTq [(FqFs
D

nX
#FqFs

A
n
#FqFsz

!FqCnp
(F

s
D

p
#F

s
A

p
)) uk

s

!FqFs
C

nn
rk
ns
]N dX

k
#PC

k
P
Ak

dukTq [FqITpCpp
(F

s
D

p
#F

s
A

p
) uk

s
(18)

#FqFs
IT
p
C

pn
rk
ns
#FqFs

IT
nXrk

ns
] dC

kB
"

Nl

+
k/1

PX
k

dukTq pkq dX
k
#

Nl

+
k/1

PX
k

dukTq okFqFs
uK k dX

k
,

where

I
p
"

1
Hka

0 0

0
1

Hkb
0

1
Hkb

1
Hka

0

, I
nX
"

0 0
1
Hka

0 0
1

Hkb
0 0 0

are the variationally consistent load vectors coming from the applied loadings
pk and pkq"Mpk

xq, pk
yq, pk

zqN. The case in which both shearing (pkat, pkbt, pkab, pkbb) and
normal (pk

zt
, pk

zb
) surface forces are applied could be of practical interest with

correspondence to the top and or bottom surface of the layer, dXp
k
"dXt

k
"

(1#h
k
/2Rka) (1#h

k
/2Rkb) dX

k
and dXp

k
"dXb

k
"(1!h

k
/2Rka) (1!h

k
/2Rkb) dX

k
. By

assigning the de"nition of virtual variations for the unknown stress and
displacement variables, the di!erential system of governing equations and related
boundary conditions for the N

l
k-layers in each X

k
domain are found. The

equilibrium and compatibility equations are

dukq: Kkqs
uu

uk
s
#Kkqs

up rk
ns
"MkqsuK k

s
#pkq, (19)

drk
nq: Kkqspu uk

s
#Kkqspp rk

ns
"0

with boundary conditions

geometrical on Cg
k

mechanical on Cm
k (20)

ukq"u6 kq or Pkqs
u

uk
s
#Pkqsp rk

ns
"Pkqs

u
N u6 k

s
#Pkqsp r6 k

ns
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in which the bar denotes assigned. The introduced di!erential arrays are given by
the following relations:

Kkqs
uu

"P
Ak

(!FqDT
p
#FqAT

p
) Ck

pp
(F

s
D

p
#F

s
A

p
) HkaHkb dz

k
,

Kkqs
up"P

Ak

[(!FqDT
p
#FqAT

p
) Ck

pn
F

s
#FqzFs

I#FqFs
A

n
!FqFs

DT
nX

] HkaHkbdz
k
,

Kkqspu"P
Ak

MFqFs
D

nX#FqFs
A

n
#FqFsz

I!Ckqs
np

(FqFs
D

p
#FqFs

A
p
)NHkaHkbdz

k
,

Kkqspp"!P
Ak

FqFs
Ckqs

nn
HkaHkbdz

k
, (21)

Pkqs
u
"P

Ak

FqITpC
pp

(F
s
D

p
#F

s
A

p
) IT

p
HkaHkb dz

k
,

Pkqsp "P
Ak

(FqFs
IT
p
C

pn
#FqFs

IT
nX

) Hka ; Hkb dz
k
,

Mkqs"P
Ak

okFqFs
IHkaHkb dz

k
.

I is the unit array. As usual in two-dimensional modellings, the integration in the
thickness direction can be made a priori by introducing the following layer integrals
(the further integrals related to the displacement formulation (see next section) are
introduced also);

(Jkqs, Jkqsa , Jkqsb , Jkqsa@b, Jkqsb@a, Jkqsab )"P
Ak

FqFs
(1, Hka, Hkb,

Hka
Hkb

,
Hkb
Hka

, HkaHkb) dz,

(Jkqzs, Jkqzsa , Jkqzsb , Jkqzsab )"P
Ak

FqzFs
(1, Hka, Hkb, HkaHkb) dz,

(22)

(Jkqsz, Jkqsza , Jkqszb , Jkqszab )"P
Ak

FqFsz
(1, Hka, Hkb, HkaHkb) dz,

(Jkqzsz, Jkqzszab )"P
Ak

FqzFsz
(1, HkaHkb) dz.

As a further step, the di!erential and algebraic operators can be conveniently split
in the two terms related to the Hka and Hka , respectively,

(D
p
, A

p
, D

nX
, A

n
, I

p
, I

nX)"
1
Ha

(Da
p
, Aa

p
, Da

nX
, Aa

n
, I

p
, I

nX
)

#

1
H

(Db
p
, Ab

p
, Db

nX
, Ab

n
, Ib

p
, Ib

nX
). (23)
b
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Therefore, the di!erential operators of equations (21) are written

Kkqs
uu

"(!Da
p
T#Aa

p
T )C

pp
[Jkqsb@a (Da

p
#Aa

p
)#Jkqs(Db

p
#Ab

p
)]

#(!Db
p
T#Ab

p
T) C

pp
[Jkqsa@b(Da

p
#Aa

p
)#Jkqs(Db

p
#Ab

p
)],

Kkqs
up"(!Jkqsb DaT

p
!Jkqsa DbT

p
#Jkqsa AbT

p
#Jkqsb AaT

p
) Ck

pn
#Jkqzsab I#(Jkqsb Aa

n
T#Jkqsa Ab

n
T )!Jkqsb DaT

nX!Jkqsa DbT
nX

,

Kkqspu"!Ck
np

(Jkqsb Da
p
#Jkqsa Db

p
#Jkqsa Ab

p
#Jkqsb Aa

p
) (24)

#Jkqszab I#(Jkqsb Aa
n
#Jkqsa Ab

n
)#Jkqsb Da

nX#Jkqsa Db
nX

,

Kkqspp"!Jkqsab
Ckqs

nn
,

Pkqs
u
"(Jkqsb@aIapT#JkqsIb

p
T )C

pp
(Da

p
#Aa

p
)#(JkqsIa

p
T#Jkqsa@bIbpT) C

pp
(Db

p
#Ab

p
),

Pkqsp "(Jkqsb Ia
p
T#Jkqsa Ib

p
T) C

pn
#Jkqsb IaT

nX
#Jkqsa IbT

nX .

The inertia array is found as

Mkqs
ij
"Jkqsab d

ij
, i, j"1, 3, (25)

where the Kroneker symbol d
ij

has been introduced. Cylindrical shell equations are
simply obtained by enforcing Ra"R (or Rb"R) while spherical shell
geometries correspond to the case Ra"Rb. Neglecting all the curvature terms the
governing equation written for multilayered plates [40] are given as particular
cases.

Explicit forms of the governing equations for each layer can be written by
expanding the introduced subscripts and superscripts in the previous arrays as
follows:

k"1, 2, 2, N
l
, q"t, r, b, s"t, r, b, (r"2, 2, N).

4.2. EQUILIBRIUM EQUATIONS FOR THE k-LAYERS: CLASSICAL DISPLACEMENT
FORMULATIONS

Upon introducing equations (3), (6), and (4) and following the same procedure
developed for the mixed case, (equation (17)) leads to

Nl

+
k/1
APX

k
P
Ak

dukTq M(!FqDT
p
#FqAT

p
) [C3

pp
(F

s
D

p
#F

s
A

p
)

#C3
pp

(F
s
D

nX
#F

s
A

n
#F

sz
)]#(!FqDT

nX
#FqAT

n
#Fqz)

][C3
np

(F
s
D

p
#F

s
A

p
)#C3

nn
(F

s
D

nX
#F

s
A

n
#F

sz
)]N u

s
dX

k (26)

#PC
k
P
Ak

dukTq MFqITp [C3
pp

(F
s
D

p
#F

s
A

p
)#C3

pp
(F

s
D

nX
#F

s
A

n
#F

sz
)]

#FqITnX[C3
np

(F
s
D

p
#F

s
A

p
)#C3

nn
(F

s
D

nX#F
s
A

n
#F

sz
)]Nu

s
dC

kB
"

Nl

+
k/1

PX
k

dukTq pkq dXp
k
#

Nl

+
k/1

PX
k

dukTq okFqFs
uK k .
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The di!erential system of governing equations and related boundary conditions are
as follows:

dukq : Kkqs
d

uk
s
"MkqsuK k

s
#pkq

geometrical on Cg
k

mechanical on Cm
k

(27)

ukq"u6 kq or Pkqs
d

uk
s
"Pkqs

d
u6 k
s
.

The introduced di!erential arrays are

Kkqs
d
"P

Ak

M(!FqDT
p
#FqAT

p
) [C3

pp
(F

s
D

p
#F

s
A

p
)

#C3
pn

(F
s
D

nX
#F

s
A

n
#F

sz
)]#(!FqDT

nX
#FqAT

n
#Fqz)

][C3
np

(F
s
D

p
#F

s
A

p
)#C3

nn
(F

s
D

nX
#F

s
A

n
#F

sz
)]NHkaHkb dz

k
, (28)

Pkqs
d
"P

Ak

MFqITp [C3
pp

(F
s
D

p
#F

s
A

p
)#C3

pp
(F

s
D

nX#F
s
A

n
#F

sz
)]

#FqITnX[C3
np

(F
s
D

p
#F

s
A

p
)#C3

nn
(F

s
D

nX
#F

s
A

n
#F

sz
)]NHkaHkb dz

k
.

The de"nitions given by equations (22) and (23) can be introduced in the previous
arrays in a manner similar to that for the mixed case. For the sake of brevity the
resulting formula are not given.

4.3. ASSEMBLY FROM LAYER TO MULTILAYERED LEVEL

In the previous sections mixed and standard displacement formulations have
been written for the N

l
independent layers. Multilayered equations can be written

according to the usual variational statements; sti!ness and/or compliances related
to the same variables are accumulated in this process. Interlaminar continuity
conditions are imposed at this stage. Details on this procedure can be found in the
papers mentioned earlier. Multilayered arrays are introduced at the very end of the
assemblage. The equilibrium and boundary conditions for the displacement
formulation take the following form:

K
d
u"MuK#p,

(29)
u"u6 or P

d
u"P

d
u6

while for the mixed case, one has

K
uu

u#K
uprn

"MuK#p#p1Nl
u

,
(30)

Kpuu#Kpprn
"p1Nlp

while the boundary conditions are

u"u6 or P
u
u#Pprn

"P
u
u6 #Ppr6 n#q1Nlp , (31)

p1Nl
u

and p1Nlp are the arrays obtained from the transverse stress values imposed at
the top/bottom of the plate.
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4.4. CLOSED-FORM SOLUTIONS

The boundary value problem governed by equations (29), (30) and (31) in the
most general case of geometry, boundary conditions and lay-outs, could be solved
by implementing only approximate solution procedures. In order to assess the
proposed models these equations are solved for a special case in which closed-form
solutions are given. The particular case in which the material has the following
properties (as it is the case of cross-ply shells) CI

16
"CI

26
"CI

36
"CI

45
"0 has been

considered, for which Navier-type closed-form solutions can be found by assuming
the following harmonic forms for the applied loadings pk"Mpkaq, pkbq

, pk
zq
N and

unknown displacement uk"Mukaq, ukbq
, uk

zq
N and stress rk

n
"Mpkazq, pkbzq, pk

zzq
,N variables

in each k-layer:

(ukaq
, pkazq, pkaq)"+

m,n

(;ka, Skazq, Pkaq) cos
mna

k
a
k

sin
nnb

k
b
k

eiumnt( , k"1, N
l
,

(ukbq
, pkbzq, pkbq

)"+
m,n

(;kb, Skbzq, Pkbq
) sin

mna
k

a
k

cos
nnb

k
b
k

eiumnt( , q"t, b, r, (32)

(uk
zq
, pk

zzq
, pk

zq
)"+

m,n

(;k
z
, Sk

zzq
, Pk

zq
) sin

mna
k

a
k

sin
nnb

k
b
k

eiumnt( , r"2, N

which correspond to simply supported boundary conditions. a
k
and b

k
are the shell

lengths in the a
k
and b

k
directions, respectively, while m and n are the corresponding

wave numbers; i"J!1, t' is the time and u
mn

is the circular frequency. Capital
letters at the RHS denote corresponding maximum amplitudes. Upon substitution
of equation (32) the governing equations assume the form of a linear system of
ordinary di!erential equations in the time domain. The free vibration response
leads to an eigenvalue problem. Upon elimination of the stress unknowns, the
mixed case leads to

DDK<
uu
!(K<

up (K< pp)~1K< pu)!u2
mn

M< DD"0. (33)

The double bar denotes determinant, while the hat indicates arrays constituted by
real numbers. This procedure has been coded for the di!erent case theories and
results are discussed in the next section.

5. RESULTS AND DISCUSSION

The two-dimensional theories derived above have been applied to a large
number of homogeneous and layered, simply supported, plates and cylindrical and
spherical shell problems. The most signi"cant results are described in the following
analysis. Generally, the free vibrational response has been analyzed and compared
to three-dimensional solutions as well as to available re"ned theories.
A compendium of the acronyms used to denote the theories considered have been
given in Table 1. Continuous reference to these acronyms is made in the subsequent
text.

As a preliminary assessment Tables 2}4 compare the proposed models to
available mixed results. Thin and thick as well as square and rectangular plate



TABLE 1

¸ist of the acronyms used to denote plate and shell theories

* ¹heories from literature

CLT Classical Lamination Theory
FSDT First order Shear Deformation Theory
ESLM Equivalent Single Layer Model
C&P1, C&P3 Linear and cubic case after Cho and Parmerter [49]
D&P Dennis and Palazotto [62]
D&S1, D&S3 Linear and cubic case after Di Sciuva [63]
IK&T Idlbi, Karama and Touratier [51]
J&T Jing and Tzeng [56]
LC&W Lo, Christiansen and Wu [44]
Mur. Murakami [61]
PAR

ds
, HYP

ds
, UNI

cs
,

PAR
cs
, HYP

ds
Timarci and Soldatos [50]

R&L Reddy and Liu [64]
R&P Reddy and Phan [65]
Ren Ren [48]
T&M3 Toledano and Murakami [52]
ZZL Di Sciuva and Carrera [66]
LWM Layer Wise Model
LWM-1 Cho et al. [37]
LWM-2 Nosier et al. [38]

* Present ¹heories

D1d, D2d, D3ds Classical models discarding p
zzD1i, D2i, D3it Classical models in equations (5)

M1i, M2i, M3i Mixed models in equations (9), (10)
M1d, M2d, M3d Mixed models discarding p

zzLW4 Mixed layer-wise model equation (15) relate to N"4

s 1,2,3 denote linear, parabolic and cubic u-"elds, respectively, while d signi"es that p
zz

has
been discarded.
t i denotes results including p

zz
.

p
zz
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geometries have been analyzed. Cross-ply, symmetrically (N
l
"3, 9) and

unsymmetrically (N
l
"4) laminated plates are considered in Tables 2 and 3 and

Figure 3. The mechanical data of the lamina are those used by Pagano [5]:
E

L
/E

T
"25]106 psi, G

LT
/E

T
"0)5]106 psi, G

TT
/E

T
"0)2]106 psi, l

LT
"l

TT
"0)25, where, following the usual notation [31], ¸ signi"es the "ber direction,
¹ the transverse direction and l

LT
is the major Poisson ratio. A good agreement

with the mixed models by Murakami [61] and Toledano and Murakami [52] has
been found. Further, the LW4 analysis matches the exact solution with excellent
accuracy. This result con"rms [40}42] the reliability of layer-wise mixed models to
give a three- dimensional description of stress and displacement "elds in laminated
plates. LW4 analysis has in fact been taken as a reference solution in the present
work wherever three-dimensional solution are not available. The improvements
introduced by taking p

zz
e!ects into account are evident for the thick plate cases.



TABLE 2

Maximum transverse displacement ;M
z
";

z
]100E

T
h3/(pNl

zt
a4) (z"0) of thick plate

in cylindrical bending. Comparison of present analyses to exact solutions by Pagano
[5] and to available mixed results

a/h"4 a/h"6
N

l
"3 N

l
"4 N

l
"3 N

l
"4

Exact 2)887 4)181 1)635 2)556
T&M3 2)881 4)105 1)634 2)519
C&P3 * 4)083 * 2)501
Mur. 2)907 3)316 1)636 2)107
C&P1 * 3)316 * 2)107
LC&W 2)687 3)587 1)514 2)242

Present analysis
LW4 2)887 4)181 1)625 2)556

* p
zz

included
M3i 2)881 4)102 1)634 2)514
M2i 2)831 3)478 1)602 2)195
M1i 2)904 3)300 1)634 2)095

* p
zz

discarded
M3d 2)898 4)124 1)637 2)516
M2d 2)848 3)488 1)605 2)195
M1d 2)904 3)306 1)634 2)098

TABLE 3

In-uence of thickness ration on ;M
z
";

z
]100E

T
h3/(pNl

zt
a4) (z"0) and SM

xz
"S

xz
/

(pNl
zt

a/h), (z"0 unless denoted). Rectangular (b"3a) three-layered plates. Exact
solution by Pagano [5]

;M
z

SM
xza/h 4 10 20 4 z 10 20

Exact 2)820 0)919 0)610 0)387 * 0)420 0)434
IK&T 2)729 0)918 0)609 0)378 * 0)441 0)451
D&S1 2)717 0)881 0)599 0)366 * 0)419 *

D&S3 2)757 0)919 0)610 0)329 * 0)420 *

Ren 2)80 0)920 * 0)317 * 0)415 *

Present analysis
LW4 2)821 0)919 0)610 0)387 !0)23 0)420 0)434

* p
zz

included
M3i 2)815 0)919 0)609 0)385 !0)23 0)420 0)434
M2i 2)767 0)906 0)606 0)393 !0)23 0)421 0)435
M1i 2)839 0)915 0)606 0)399 !0)23 0)420 0)434
D3i 2)625 0)867 0)596 0)378 !0)17 0)427 0)436

* p
zz

discarded
M3d 2)832 0)918 0)607 0)386 $0)27 0)420 0)434
M2d 2)784 0)904 0)604 0)393 $0)23 0)421 0)435
M1d 2)839 0)915 0)606 0)394 $0)23 0)420 0)434
D3d 2)644 0)866 0)593 0)377 0 0)427 0)436

818 E. CARRERA



TABLE 4

Ren1s shells problem. Symmetric three layers 90/0/90. ¹ransverse displacement
amplitude. ;M

z
";

z
]10E

T
h3/P1

zb
R4b, z"0. Exact solution by Ren [9]

Rb/h 2 4 10 50

Exact 1)436 0)457 0)144 0)0808
CLT 0)0799 0)0781 0)0777 0)0776
FSDT * 0)342 0)120 0)0793
D&P 1)141 0)382 0)128 0)0796
J&T * 0)459 0)142 0)0802

Present analysis
LW4 1)432 0)4580 0)1440 0)0808

* p
zz

included
M3i 1)412 0)4535 0)1440 0)0808
M1i 1)474 0)4569 0)1432 0)0805
D3i 1)364 0)4225 0)1363 0)0805
D1i 1)112 0)3292 0)1187 0)0795

* p
zz

discarded
M3d 1)454 0)4583 0)1428 0)0804
M1d 1)464 0)4595 0)1423 0)0804
D3d 1)402 0)4271 0)1351 0)0802
D1d 1)159 0)3314 0)1179 0)0795

Figure 3. S
xz

/(pNl
zt

a/h) versus z. Cross-ply, square plate. Data of Table 2 (nine layers case,
a/h"2)5, 100). LW-2)5 *; M3i-2.5 ----; M3d-2)5 )))); LW4-10 )))))))); M3i-10 -)-)-); M3d-10 -)-)-)-).

p
zz
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Higher order mixed models lead to the best description. A comparison with the
other models of Table 3 (C&P1, C&P3, D&S1, D&S3, IK&T which allow
interlaminar continuous transverse shear stresses) reveals that the extension of such
a continuity to p

zz
permits one to conclude that the M3i-model leads to the best

ESL results. These comments are further con"rmed by comparing the
M3d,M2d,M1d to M3i,M2i, M1i analysis. Figure 3 makes evident a fundamental
limitation of each laminated theory which neglected p

zz
. (i) The plate has been

loaded at the top surface: LW4 and M3i analyses show that p
zz

enforces a
non-symmetrical distribution of transverse shear stress SM

xz
versus z. (ii) The plate in

symmetrically laminated M3d analysis (as well as any other plate theories in which
p
zz

is discarded) tragically leads to a symmetrical distribution of SM
xz

versus z. (iii) It
is concluded that analyses which discard p

zz
cannot improve the transverse shear

stress "elds in the whole thickness. It should be further noticed that the maximum
value (S

xz
/pNl

zt
)
.!9

+0)4]2)5+1 is almost coincident to the maximum p
zz

value
(S

zz
/pNl

zt
)
.!9

"1 for the thicker plate case; this is for the simple reason (as stated by
Koiter, see Section 1) that p

zz
cannot be neglected in thick plate analysis. Symmetry

is reached for thinner plates. Additional results of p
zz

e!ects on static analysis of
multilayered plates has been provided by the author in reference [58].

A cross-ply laminated cylindrical panel, loaded by harmonic distribution of
transverse pressure of amplitude P1

zt
, applied at the bottom external surface has

been considered in Table 4. Exact solutions were given by Ren [9]. A comparison
on transverse displacement amplitude has been made with results by Jing and
Tzeng [56] that applied the Reissner's theorem in conjunction to a linear trough
the thickness displacement "elds. Comments made above for the plate geometry
can be con"rmed for the cylindrical shell panel case.

Free vibration response of isotropic and cross-plied plates and cylindrical shells
is considered in Tables 5}10. Analyses in which p

zz
is discarded (M3d results)

overestimate the vibration response with respect to M3i case. Higher order
frequencies related to higher modes are considered in Table 5 for an isotropic plate.
It is shown that the in#uence of p

zz
is very much subordinate to the vibrational

modes. In particular, the "rst thickness-twist mode seems not to be a!ected by
re"nements introduced in the two-dimensional modellings considered. It should be
noted that the higher order theories D3d can lead to poorer results than D2i and
D1i. This result con"rms Koiter's recommendation [1]. Zigzag and interlaminar
continuity are not applicable to this problem. Mixed results, are in fact not given.

Table 6 compares the present results with those by Nosier et al. [38] for a
four-layered cross-ply plate. Fundamental and higher frequencies related to two
half-waves modes are considered for a symmetrically cross-ply laminated plate.
LW4 accuracy with respect to exact solution is con"rmed. Only nine frequencies
can be found for the D3d analysis. M3i analysis leads to the best ESLM description.
It is to be noted that M3d results can be better or worst than D3i ones; it is not
predictable a priori whether re"nements of classical theories discarding p

zz
(such as

M3d case) will improve classical analysis (such as M3i case) including p
zz

.
A comparison to the recent exact solution by Ye and Soldatos [14] and to several

re"ned models quoted in reference [50] has been provided in Table 7. A
three-layered, moderately thick cylindrical shell has been considered. Good



TABLE 5

Comparison of present analysis to exact by Srinivas and alii [6] and to other re,ned
models on the lowest ,ve circular frequency parameter uhJo/G. Simply supported
square isotropic plates (l"0)3). A and S denote modes which are antisymmetric and

symmetric about the mid-plane. I}S and II}S are both thickness-twist modes

Model I}A I}S II}S II}A III}A

mh/a"0)1, nh/a"0)1
Exact 0)0931 0)4443 0)7498 3)1729 3)2465

LWM-1 0)0931 0)4443 0)7499 3)1736 3)2496
R&P 0)0931 * * * *

* Present analysis
LW4 0)0931 0)4443 0)7498 3)1726 3)2465

* p
zz

included
D3i 0)0932 0)4443 0)7498 3)1737 3)2485
D2i 0)0934 0)4443 0)7498 3)4924 3)5699
D1i 0)1029 0)4443 0)7502 3)4924 3)5883

* p
zz

discarded
D3d 0)1024 0)4443 0)8311 3)1737 3)2735
D2d 0)1029 0)4443 0)8311 3)4925 3)5895
D1d 0)1029 0)4443 0)8312 3)4250 3)5880

mh/a"0)2, nh/a"0)2
Exact 0)3421 0)8886 1)4923 3)2648 3)5298

LWM-1 0)3416 0)8886 1)4932 3)2656 3)5398
R&P 0)3411 * * * *

* Present analysis
LW4 0)3421 0)8886 1)4923 3)2656 3)5309

* p
zz

included
D3i 0)3421 0)8886 1)4923 3)2657 3)5355
D2i 0)3456 0)8886 1)4925 3)4555 3)5763
D1i 0)3763 0)8886 1)4959 3)5763 3)7627

* p
zz

discarded
D3d 0)3701 0)8886 1)6623 3)2656 3)6255
D2d 0)3763 0)8886 1)6623 3)5763 3)9257
D1d 0)3763 0)8886 1)6623 3)5763 3)7627

p
zz
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agreement between present mixed analysis and exact solution has to be registered.
Better results with respect to standard classical displacement formulation are
found. The value quoted in brackets accompanying some of the numerical results in
Table 7 indicates the circumferential wave number, n, for which the fundamental
frequency was detected. All the theories considered in reference [50] neglect
transverse normal stress e!ects. Uniform UNI, parabolic PAR and hyperbolic
HYP transverse shear stress distribution in the thickness shell direction where



TABLE 6

Comparison of present mixed analysis to exact [6] and to other re,ned models on the
lowest 10 circular frequency parameters uhJo/E

T
Simply supported square plates

a/h"10. Cross-ply skew-symmetric laminates 0/90/0/90 E
L
"25)1]106 psi, E

T
"

4)8]106 psi, E
z
"0)75]106 psi, G

LT
"1)36]106 psi, G

Lz
"1)2]106 psi, G

Tz
"

0.47]106 psi, l
LT

"0)036, l
Lz
"0)25, l

TT
"0)171

Nosier et al. 1993 Present
Exact LWM-2 R&P LW4 M3i M3d D3i D3d

m"n"1
0)06621 0)06622 0)06789 0)06621 0)06627 0)06635 0)06774 0)06781
0)54596 0)54600 0)54845 0)54596 0)54729 0)54733 0)54808 0)54808
0)59996 0)59999 0)60261 0)59996 0)60119 0)60263 0)60197 0)60340
1)2425 1)2435 1)4237 1)2425 1)2436 1)3055 1)2438 1)4201
1)2988 1)2996 1)4535 1)2987 1)3337 1)3357 1)4204 1)4504
1)3265 1)3274 * 1)3265 1)3055 2)6920 1)4482 2)9165
2)3631 2)3698 * 2)3631 2)6914 2)7018 2)9145 2)9253
2)3789 2)3856 * 2)3789 2)7066 4)9080 2)9305 5)6706
2)4911 2)4983 * 2)4911 2)8356 4)9095 3)0745 5)6757
3)6661 3)6939 * 2)6662 4)9061 5)9554 5)1758 *

m"2, n"1
0)15194 0)15198 0)16065 0)15194 0)15224 0)15231 0)15947 0)15953
0)63875 0)63879 0)64119 0)63875 0)63999 0)64052 0)64072 0)64122
1)0761 1)0765 1)09931 1)0761 1)0869 1)0902 1)0924 1)0958
1)2417 1)2426 1)4651 1)2417 1)2434 1)3499 1)2439 1)4616
1)3425 1)3433 1)7525 1)3425 1)3492 1)6566 1)4611 1)7327
1)6323 1)6336 * 1)6323 1)6536 2)7117 1)7295 2)9347
2)3869 2)3936 * 2)3869 2)7128 2)8525 2)9349 3)0713
2)4844 2)4917 * 2)4844 2)8281 4)9172 3)0582 5)6802
2)5614 2)5678 * 2)5614 2)8690 4)9848 3)1056 5)7638
3)6778 3)7051 * 3)6778 4)9171 5)9663 5)1807 *
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considered as well as the two cases of interlaminar discontinuous
ds

and continuous

cs
shear stresses (see reference [50] for further details). Uniform distribution cases

do not ful"ll static conditions at the top and bottom shell surfaces. ZZ¸ results
refer to analysis in reference [66] which is the same as that of UNI

cs
. The

fundamental mode, e.g. n-values can be erroneously predicted by simpli"ed
analysis. The importance of ful"lling the interlaminar transverse shear stress
continuity has been con"rmed by the present analysis. Nevertheless, the role played
by the transverse normal stress should be underlined. Such a role could become
more predominant for thicker shells. Comments made in the above discussion of
Table 6 results have been con"rmed by Table 7.

A few further parametric studies have been presented to provide some insight
into the e!ects of variation in material and geometric characteristics of laminated
shells on their vibration characteristic. Tables 8 and 9 consider laminated circular
cylinders having both symmetric and skew-symmetric lamination with respect to



TABLE 7

E+ect of radii to length ratio R/a on u]a2Jo/h2E
T
. Comparison to exact solution

by >e and Soldatos [14] and to other re,ned analyses. a/h"10, m"1, n"2 unless
given in brackets. ¹hree-layered ringed shell 0/90/0, h

1
"h

3
"h

2
/2. E

L
/E

T
"25,

G
LT

/E
T
"0)5, G

TT
/E

T
"0)2, l

LT
"l

TT
"0)25

Rb/a 5 10 50 100

Exact 10)30514 10)02722 9)83424 9)815
PAR

ds
10)496 10)223 10)03226 10)013

HYP
ds

10)496 10)226 10)03626 10)018
UNI

cs
10)462 10)187 9)99628 9)977

PAR
cs

10)329 10)051 9)85926 9)840
HYP

cs
10)328 10)050 9)85826 9)839

ZZL 10)46214 10)18724 9)99616 9)9714

* Present analysis
LW4 10)30514 10)02722 9)83426 9)815
M3i 10)30914 10)03022 9)83726 9)818
M3d 10)32414 10)04322 9)84726 9)828
M1i 10)32814 10)04622 9)85026 9)831
M1d 10)32814 10)04622 9)85026 9)831
D3i 10)45314 10)17922 9)98826 9)969
D3d 10)47014 10)19322 9)99826 9)979
D1i 11)31814 11)06320 10)87920 10)862
D1d 11)31814 11)06420 10)88020 10)862
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the middle surface for which approximate three dimensional solution were given by
Noor and Rarig [11]. The "bers of the di!erent layers alternate between the
longitudinal a and circumferential b directions, with the "bers of the top layer
running in the circumferential direction. The total thickness of the circumferential
and longitudinal layers in each shell was the same. The material characteristics of
the individual layers were taken to be those of typical of high-modulus "brous
composites, namely G

LT
/E

T
"G

Lz
/E

T
"0)6, G

TT
/E

T
"0)5, l

LT
"l

TT
"0)25. The

degree of orthotropy of the individual layers E
L
/E

T
, the thickness ratio Rb/h as well

as circumferential modes n were varied in the investigations. Accurate description
of very thick shells with increasing number of layers demand a layer-wise
description. Note that D3i results are in some case more accurate than those related
M3d analyses. In such a case p

zz
plays a predominant role with respect to zigzag

e!ects and interlaminar equilibria. It is concluded that the approximation
introduced by discarding p

zz
are very much in#uenced by geometrical and

mechanical parameters as well as by laminate stacking sequence.
The problems investigated previously have been restricted to a laminated

structure with almost constant transverse mechanical properties in the thickness
direction (the Young's modulus is constant in the z-shell direction and the variation
of CI

13
and CI

23
in the same direction is at least one order of magnitude less than the

other layer constant). Previous plate analyses [58] showed that the zigzag form of



TABLE 8

E+ect of degree of orthotropy of the individual layers E
L
/E

T
on u]10Joh2/E

T
.

Comparison to 3D solutions by Noor and Rarig [11]. h/Rb"0)2, a/Rb"1, m"1,
n"4

N
l

E
L
/E

T3 10 40

3D 2 2)3141 2)5464 2)9262
LW4 2)3141 2)5464 2)9263
M3i 2)3152 2)5619 2)9791
M3d 2)3721 2)5966 2)9999
D3i 2)3153 2)5640 3)0049
D3d 2)3722 2)5986 3)0247

3D 3 2)3173 2)6542 3)1675
LW4 2)3173 2)6542 3)1998
M3i 2)3226 2)6659 3)1998
M3d 2)3718 2)6943 3)2221
D3i 2)3227 2)6668 3)2096
D3d 2)3719 2)6953 3)2316

3D 5 2)3767 2)8245 3)4631
LW4 2)3767 2)8245 3)4633
M3i 2)3807 2)8336 3)4887
M3d 2)4268 2)8555 3)5038
D3i 2)3816 2)8371 3)5011
D3d 2)4278 2)8591 3)5163

3D 10 2)4357 2)9856 3)7506
LW4 2)4357 2)9856 3)7507
M3i 2)4397 2)9945 3)7692
M3d 2)4849 3)0133 3)7784
D3i 2)4404 2)9967 3)7763
D3d 2)4857 3)0155 3)7855

824 E. CARRERA
u
z

had in fact barely been exhibited by the exact analysis. In order to investigate
transverse stress e!ects for highly transverse anisotropic structures a multilayered
plate and spherical panel with non-constant distribution of Young modulus E

z
in

the thickness direction has been considered in Figure 4 and Table 10. Three layered
thick and thin #at and spherical panels constituted by isotropic (l"0)3) layers has
been investigated. The panels are unsymmetrically laminated with E1/E2"10;
E3/E2"100 where Ek (k"1, 2, 3) are the Young's moduli of the three layers. The
same ratios have been used for mass density. E2 and o2 have been used in the
quoted non-dimensioned amplitudes. Figure 4 shows an evident zigzag behaviour
for the transverse displacement in the thickness spherical shell directions. Table 10
shows that the interlaminar equilibria and zigzag e!ect are more signi"cant with
respect to the previously cited results. D3i analyses are never more accurate than
M3d analyses.



TABLE 9

E+ect of thickness to radii ratio h/Rb on u]10Joh2/E
T
. Comparison to 3D solutions

by Noor and Rarig [11]. E
L
/E

T
"30, a/Rb"1, m"1

h/Rb n
2 4 6

N
l
"2

3D 0)05 0)8165 0)5385 0)4218
LW4 0)8165 0)5385 0)4218
M3i 0)8163 0)5391 0)4227
M3d 0)8177 0)5404 0)4245
D3i 0)8164 0)5391 0)4228
D3d 0)8177 0)5404 0)4246

3D 0)40 7)5953 6)9568 7)9209
LW4 7)5972 6)9575 7)9205
M3i 7)7327 7)1734 8)1133
M3d 7)7569 7)2205 8)1908
D3i 7)8030 7)2619 8)2181
D3d 7)8208 7)3046 8)2919

N
l
"10

3D 0)05 0)8410 0)5832 0)5027
LW4 0)8410 0)5832 0)5027
M3i 0)8410 0)5834 0)5029
M3d 0)8415 0)5842 0)5045
D3i 0)8410 0)5834 0)5030
D3d 0)8415 0)5842 0)5046

3D 0)40 8)6111 8)4732 9)8040
LW4 8)6117 8)4736 9)8043
M3i 8)6765 8)5730 9)9352
M3d 8)6778 8)5939 9)9822
D3i 8)6896 8)5957 9)9643
D3d 8)6907 8)6158 10)0103

TABLE 10

E+ect of thickness ratio a/h on u]1. E4Jo2h2/E2
T
. ¹hree layered, squared -at and

spherical panels (Ra/a"2)5) made of isotropic layers (l"0)3). m"n"1

a/h 4 10 100

Flat panels
LW4 1695)0 385)4 4)634
M3i 1717)0 386)4 4)634
M3d 1825)0 395)3 4)635
D3i 2421)0 448)9 4)644
D3d 2658)0 455)5 4)645

Spherical panels
LW4 1954)0 560)9 41)69
M3i 2007)0 566)2 41)70
M3d 2113)0 578)9 41)72
D3i 2501)0 612)5 41)70
D3d 2904)0 627)9 41)72
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Figure 4. ;
z
]100E

T
h3/(pNl

zt
a4) versus z. Three-layered spherical panel made of isotropic layers,

a/h"4. LW4*; M3i ----; D3i )))); M3d ----; D3d -)-)-)-).
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6. CONCLUDING REMARKS

The mixed theory originally proposed by Toledano and Murakami has been
reformulated and extended to dynamic analyses of plates and double-curved shells.
Transverse normal stress e!ects have been compared and evaluated by allowing
di!erent polynomial orders in the displacement expansions. Classical theories have
been considered for comparison purpose. From the investigation carried out the
following main remarks can be made.

1. The a priori ful"llment of the interlaminar continuity for p
zz

makes mixed
models more attractive than other available models which violate such a
continuity.

2. Koiter's recommendation [1] concerning isotropic shells: a re,nement of
¸ove1s ,rst approximation theory is indeed meaningless, in general, unless the
e+ects of transverse shear and normal stresses are taken into account at the same
time, could be re-written for the case of multilayered shells as: a re,nement of

22 unless the e+ects of interlaminar continuous transverse shear and normal
stresses are taken into account at the same time.

3. In any case a very accurate description of the vibrational response of highly
anisotropic, thick and very thick z-shells requires layer-wise description.
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