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This paper evaluates transverse normal stress o,, effect on vibration of
multilayered structures. To this purpose a mixed plate model initially introduced
by Toledano and Murakami has been extended to dynamics analysis of double
curved shells. These models allow both continuous interlaminar transverse shear
and normal stresses as well as the zigzag form of the displacement distribution in
the shell thickness directions to be modelled. Governing equations have been
derived by employing a Reissner’s mixed theorem. Classical models on the basis of
standard displacement formulations have been considered for comparison
purposes. The evaluations of transverse stress effects have been conducted by
comparing constant, linear and higher order distributions of transverse
displacement components in the plate thickness directions. Free vibrational
response of layered, simply supported plates, cylindrical and spherical shells made
of isotropic as well as orthotropic layers has been analyzed. The numerical
investigation carried out and comparison with earlier results has concluded that:

1. The possibility of describing a priori interlaminar continuous transverse
normal stress o,, makes the mixed theories more attractive with respect to other
available modelling.

2. Any refinements of classical models are meaningless, unless the effects of
interlaminar continuous transverse shear and normal stresses are both taken into
account in a multilayered shell theory. © 1999 Academic Press

1. INTRODUCTION

Koiter in his lecture on two-dimensional modelling of traditional isotropic shells
[1], based on energy considerations, stated that a refinement of Love’s first
approximation theory is indeed meaningless, in general, unless the effects of transverse
shear and normal stresses are taken into account at the same time. More general and
systematic substantiation of Koiter’s conclusion can be referred to in the books by
Goldenvaizer [2] and Cicala [3] in which the the method of asymptotic expansion
of the three-dimensional governing equations is employed.

Two-dimensional modellings of multilayered structures (such as laminated
constructions, sandwich panels, layered structures used as thermal protection or
intelligent structural systems embedding piezo-layers) require amendments to
Koiter’s recommendation. Among these, the inclusion of continuity of
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displacements - zigzag effects — and of transverse shear and normal stresses
— interlaminar continuity — at the interface between two adjacent layers are some
of the amendments necessary. The role played by zigzag effects and interlaminar
continuity has been confirmed by many three-dimensional analyses of layered
plates [4-8] and shells [9-14]. Due to the increasing number of parameters
(thickness, number of layers and mechanical properties such as the value of
the orthotropic ratio of the lamina) the application of asymptotic techniques
[15-23] to layered structures has not lead to conclusions as exhaustive as those
for the isotropic one layer cases [3]. Among these, the very recent treatments
presented by Sutyrin [23] are of particular interest. As far as possible, the
shear corrected theories in [23] are derived from variational asymptotic
analysis.

Exhaustive overviews on classical and refined models of multilayered structures
have been reported in many published review articles. These include the papers by
Grigolyuk and Kulikov [24], Kapania and Raciti [25], Kapania [26], Noor et al.
[27-29] and Soldatos and Timarci [30]. Among the refined theories a convenient
distinction can be made between models in which the number of the unknown
variables is independent or dependent on the number of the constitutive layers of
the shell. Following Reddy [31], we assign the name ESLM (Equivalent Single
Layer Models) to the first grouping while LWM (Layer Wise Model) is used to
denote the others. Early [32-35] and more recent [36-42] LWMs have shown the
superiority of layer-wise approaches over ESL approaches to predict accurately
static and dynamic response of thick and very thick structures. The best results
have been obtained by mixed LWMs [40-42] which a priori describe interlaminar
continuous transverse normal stress. On the other hand, LWMs are
computationally expensive and the use of ESLMs is preferred in most practical
applications. In this paper, attention is restricted to those ESLMs which, according
to the Koiter’s recommendation, address both transverse shear o,., 65, and normal
stress o, effects.

The work by Hildebrand et al., [43] and by Lo et al., [44] are examples of
classical analyses in which higher order displacement models have been employed
and ¢, is taken into account. These types of theories do not include interlaminar
continuity for the transverse shear and normal stresses nor allow the zigzag form
for the displacement variables. On the other hand, transverse normal stress has
been discarded in most of the refined ESL analyses [45-51]. In fact, the intrinsic
coupling experienced by orthotropic material between in-plane o,,, s and
out-of-plane o, stresses [see equation (3)] makes the a priori fulfillment of
g., interlaminar equilibria difficult. Interlaminar equilibria are usually restricted to
the transverse shear components while the zigzag form appears only in the two
in-plane components of the displacement. That is, Koiter’s recommendation is not
taken into account by the latter type of theories.

To allow interlaminar continuous transverse stresses (both shear and normal
components) Toledano and Murakami [52], on the basis of a Reissner mixed
variational theorem [53], proposed a mixed theory which introduced two
independent interlaminar continuous fields for the displacements and transverse
stress variables. The displacement field was assumed at a multilayered level while
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stress variables were considered independent in each layer. The possibility of
expressing stress variables in terms of the displacement variables was discussed
in reference [54]. Shell applications, which were developed by Bhaskar and
Varadan [55] and Jing and Tzeng [56] were restricted to static analysis and
neglected o,.

In the scenarios above described, the present work has the following aim: to
evaluate the effects of ¢, on the vibrational response of plate and shells in cases of
both mixed [52] and classical modellings [43]. Such an evaluation would serve to
assess the many refined ESLMs which discard o... To this purpose the mixed
theory by Toledano and Murakami [ 52] which had been originally developed for
the static analysis of plates, is extended in this paper to dynamic analysis of shells.
Related classical models based on the standard displacement formulation are
derived for comparison purposes. Transverse stress effect has been evaluated by
allowing different polynomials of order N in the assumed expansions of
displacement and/or stress unknowns. Further, a layer-wise model which has been
shown ([40-42]) to give a quasi-three-dimensional description of multilayered
structures is also introduced. This model is used as a reference solution to assess
simplified ESLM analyses. All these models are written in this paper in a unified
form by referring to techniques developed by the author in earlier works [40-42,
54, 57, 58].

2. PRELIMINARY

The salient features of shell geometry are shown in Figure 1. A laminated shell
composed of N, layers is considered. The integer k, used as superscript or subscript,
denotes the layer number which starts from the shell bottom. The layer geometry is
denoted by the same symbols as those used for the whole multilayered shell and
vice-versa. o, and f, are the curvilinear orthogonal co-ordinates (coinciding with
principal curvature lines) on the layer reference surface Q, (middle surface of the
k-layer). z; denotes the rectilinear co-ordinate in the direction normal to €. I’y is
the Q, boundary: I'f and I'}! are those parts of I', on which geometrical and
mechanical boundary conditions are imposed, respectively; these boundaries are
considered parallel to o, or f;. The further dimensionless thickness co-ordinate is
introduced, {; = 2z,/h;, where h, denotes the thickness in the 4; domain. The
following relation holds for the orthogonal system of curvilinear co-ordinates for
the square of line element, for the area of an infinitesimal rectangle on ,, and for
an infinitesimal volume, respectively [59]:

ds? = H*do? + H’[;dﬁ,% + HYdz3,
dQ, = H{:H’fz doy dy, (1)
dVv = H{;H’,‘;H';dockdﬁkdzk

where H = A*(1 + z,/R%), Hly = B*(1 + z,/R}), H: = 1. Rk and R}, are the radii of
curvature in the directions of o, and f3, respectively. A* and B* are the coeficients of
the first fundamental form of Q. For the sake of simplicity here attention is
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Figure 1. Geometry and notation of multilayered shells.

restricted to a shell with a constant curvature, i.e., double-curved shell (cylindrical,
spherical, toroidal geometries) for which A* = B" =1

The laminae are considered to be homogeneous and to operate in the linear
elastic range. By employing stiffness coefficients, Hooke’s law for the anisotropic
k-lamina is written in the form o; = C; ;;¢; where the sub-indices i and j, ranging from
1 to 6, stand for the index couples 11,22, 33,13,23 and 12 respectlvely The
material is assumed to be orthotropic, as specified, by Cia=Cyy=C3,=0Cq,
=C,5=C,5=C;35=Cgs5=0. This implies that ¢*, and of. depend only on
¢k, and &f.. In matrix form,

k
pHd C pG + C pn nG:

k k
an C pG + Cnn €nGs

(2)
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where
(&% O, O 0 0 Ck,
Ch,=|Ch G5 |, C,=Ch=[0 0 &%/,
Cte Ch Cho 0 0 Ck

0 0 C]

Bold letters denote arrays. The superscript T signifies array transposition. It should
be noted that o.. couples the in-plane and out-of-plane stress and strain
components. The subscripts n and p denote transverse (out-of-plane, normal) and
in-plane values respectively. Therefore ¢’ = {ok,, aks, 0%}, 6k = {0k, ok, o%.} and
gh = {eb,, ehp chp), € = ek, &b, ¢k}, Subscript H denotes stresses evaluated by
Hooke’s law while subscript G denotes strain from the geometrical relation in
equation (4). The sub-subscript d signifies values employed in the displacement
formulation. For the mixed solution procedure adopted, the stress—strain
relationships are conveniently put in the following mixed form [60]
oy = Chpepe + ChiGin,

3)

k _ (k ok k .k
&g = CnpspG + Cnno-nM’

where both stiffness and compliance coefficients are employed. The subscript
M states that the transverse stresses are those of the assumed model (see the next
section). The relation between the arrays of coefficients in the two forms of Hooke’s
law is simply found

k _ %k ol el kel k _ Ok k1
Cpp = Cpp - CpnCnn Cnpa Cpn = CpnCnn 5

k kL k k okt
Cnp = - Cnn Cnpa Cnn = Cnn .

Superscript —1 denotes an inversion of the array.

As the model is restricted to the small deformation field, the strain components
&k, ek are linearly related to the displacements u* (u* = uf, uf, u¥), according to the
following geometrical relations [59]:

ghe =Du* + Ak, eko =D, ou* + A + D, ub, (4)
where
0, T 1
m 0 O 0 0 m
D, =0 @ 0 A =0 O L
S 7 T N R i
9 o
_F’,‘; ﬁ; 0_ 0 0 0
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oog—“§ —ﬁ 0 0
Dg_oo@ A,=| 0 __L oy
" | " mrE O |

00 0 0 0 0

(0. 0 0
D,.=|0 a. 0

(0 0 o,

No assumption has been made for those terms which are divided by H% and H}; are
not expanded as Taylor series [57, 59]. That is, curvature terms have been entirely
retained in the following developments.

3. DISPLACEMENT AND STRESS ASSUMPTION

3.1. CLASSICAL MODELS

Firstly, classical models are considered. As usual, the displacement variables are
expressed in Taylor series in terms of unknown variables which are defined on the
plate reference surface €2,

u=uy,+zw, r=12, ...,N, (5)

where N is a free parameter of the model. Different values for different modellings
and different displacement and stress components are assumed. The repeated
r indices are summed over their ranges. Subscript 0 denotes displacement values
with correspondence to the plate reference surface Q. Linear and higher order
distributions in the z-direction are introduced by the r-polynomials. The assumed
models can be written with the same notations that will be adopted for the
layer-wise stress model (equation (10)). Equation (5) is therefore rewritten

u= Fu, + F,u, + F,u, = F,u,, T=tb,r, r=12,...,N—1. (6)

Subscript b denotes values related to the plate reference surface Q2 (u, = u,) while
subscript t refers to the highest term (u, = uy). The F, functions assume the
following explicit form:

F,=1, F, =2, F,=72, r=12,...,N—1 7)

Transverse stress o,, and strain ¢,, effects are discarded by forcing a constant
(N = 0) distribution for the the u,-expansion.

3.2. MIXED MODELS

The zigzag form of the displacement fields can be reproduced in equation (5) by
employing the Murakami theory [61]. Within the framework of the ESL
description and according to references [52, 61] a zigzag term can be introduced
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into equation (5) (see Figure 2):
uk:uO‘}—(—l)k{kuZ—{-Z"ur, 7'21,2, ,N (8)

Subscript Z refers to the introduced zigzag term. With unified notations equation
(6) becomes

u* = F,u, + Fyu, + F,u, = F.u, T=tb,r, r=12...,N 9)

Subscript t refers to the introduced zigzag term (u, = uy, F, = (—1)*{,). It should be
noticed that F, assumes the values + 1 in correspondence to the bottom and the top
interface of the k-layer (see Figure 2).

The thickness expansion used for displacement variables in equation (9) is not
suitable for the transverse stress cases. For instance, homogeneous top—bottom
plate surface conditions cannot be imposed. Transverse stresses are therefore herein
described by means of the layer-wise description [52, 54, 61]:

k k k k k
OnM = Fto-nt + Fbo-nb + Fro-nr = Ftcnra T =1, b, r,
r=23,.,N, k=12, .., N. (10)
Linear case § © Zig-zag ‘ Higher order case

: function

e

(b) o Interfaces
- - - Displacement fields without Zig-zag function contribution

< <

Linear case Higher order case

O Interfaces

(@)

Figure 2. Displacement and stress fields assumed for the employed models. (a) LWM case. (b)
ESLM case.
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In contrast to equation (9), it is now intended that the subscripts ¢ and b denote
values related to the layer top and bottom surface respectively. They consist of the
linear part of the expansion. The thickness functions F,({;) have now been defined
at the k-layer level:

_Py+ Py Py — Py

Ft 2 7Fb: 2 5

F.=P,—P,_,, r=23,..,N. ()

in which P; = P;({,) is the Legendre polynomial of the j-order defined in the
{i-domain: —1 < {, < 1. The parabolic, cubic and fourth order stress field
equation (10) will be associated to linear, parabolic and cubic displacement field in
equation (9), respectively, in the numerical investigations. The related polynomials
are

CSG 3G

PO=1: P1=Ck> P2=(3Cl%_1)/23 P3 7_71

35 1533

Pa==3 1 3

The functions selected have the following properties:

. _{ I: F,=1, F,=0, F, =0,
=

12
—1. F,=0, F,=1, F,=0. (12)

The top and bottom values have been used as unknown variables. The interlaminar
transverse shear and normal stress continuity can therefore be easily linked:

ok, =cktl k=1 N,— I (13)

In those cases in which the top/bottom-shell stress values are prescribed (zero
or imposed values), the following additional equilibrium conditions must be
accounted for:

1 = N =
Gy = Opp, 6nt1 = Oy, (14)

where the over-bar is the imposed value in correspondence to the plate boundary
surfaces. Examples of linear and higher order fields have been plotted in Figure 2.
The stress variables could be eliminated by employing the weak form of Hooke’s law
proposed in reference [54].

3.3. LAYER-WISE MIXED MODEL

In the author’s previous papers [40-42, 54], two independent layer-wise fields
are assumed for both displacement and stress variables as in equation (10):

t,b,r,
2,
1

b

u* = Fuf + Fyuf + Fuf = Ful,

; (15)

l-

T
r 3, ...,N
k 2, ...,N

b

k k k k k
oM = FIG nt + Fbo-nb + Fanr = Ftcnra
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In addition to equation (13) the compatibility of the displacement reads

uf =ty k=1 N,— 1. (16)

4. GOVERNING EQUATIONS

In order to write all the models mentioned in the previous section it is convenient
to refer to all the stress and displacement variables at the k-layer level, i.e. to use
a layer-wise description. ESL cases are achieved by writing the governing equations
at the multilayered plate level.

The displacement approach is formulated in terms of u* by variationally
imposing the equilibrium via the principle of virtual displacements. In the dynamic
case this establishes

N, N,
Y j J (0esGOhm, + OnGong,) dQdz = ) J J proukik dV + oLe, (17)
k=1 J JAx k=1 J% JA
where 0 signifies virtual variations and p, denotes mass density. The variation of the
internal work has been split into in-plane and out-of-plane parts and involves the
stress obtained from Hooke’s Law and the strain from the geometrical relations.
oL, is the virtual variation of the work done by the external layer-forces
p* ({p%, Py P2}

In the mixed case, the equilibrium and compatibility are both formulated in
terms of the u* and 6% unknowns via Reissner’s mixed variational theorem RMVT

[53]

k=1

N,
) f f (55T 6y + 0ekL oy + S0kl (et — ) A0 dz
Q. JA

N,
=) J pkouki*dy + oL

k=1 Jo. Ja,
The LHS includes the variations of the internal work in the shell: the first two terms
come from the displacement formulation, they will lead to variationally consistent
equilibrium conditions, the third “mixed” term variationally enforces the
compatibility of the transverse strains components.

4.1. EQUILIBRIUM AND CONSTITUTIVE EQUATIONS FOR THE k-LAYERS: MIXED CASE

In contrast with most of the available shell literature and to the author’s previous
works related to plates, in the present analysis the definition of stress or strain
resultants in the shell thickness direction has been omitted. Such a choice is mainly
due to the wish to preserve the terms HE, Hf; in the strain equation (4). In fact, if the
Love’s approximation Hf = H§ = 1 is not introduced, as is the case in the present
article, the definition of stress and strain resultants remains still possible, but
according to the author’s opinion, not convenient. As a result, together with the
derivations of this paper, the governing equations will be directly written in terms



812

of the introduced stress and displacement variables. By using the array formula for
the integration by parts similar to those introduced in reference [42] the RMVT
work equations equation (18) assumes the following form:

E. CARRERA

N,
Z <j {5ufT[(—FrDIT, + FTAIT,) C,,(F:D, + FA)) ut
k=1 Q
+ ( - FtD;l; + FrA;) CpnFso-ﬁs + ( - FrDIQ + F‘EAI + Fr,) Fso-lr(ts]
x 86 [(F.FD,q + F.FA, + F.F, — F.C,,(F,D, + F,A,)) u
— F.F,.C,,06k]} dQ, + f j 5u’§T[FtI£CI,p(FsDP + F,A,)uf (18)
I K
+ FrFsI;Cpno-ﬁs + FtFSIEQGﬁs] drk)
N, , N, .
=) J Sub ptdQ, + ) f ouk p*F F,ii* dQ,,
k=1 Q k=1 Q
where
! ] 1
F’; 0 O 0 0 ﬁfj
1 1
1
— — 0 0 0 O
|Hp Hi ]

are the variationally consistent load vectors coming from the applied loadings
p* and p¥ = {p%, pk, pt.}. The case in which both shearing (pk, p. pk Pfs) and
normal (p%, p%,) surface forces are applied could be of practical interest with
correspondence to the top and or bottom surface of the layer, dQf = dQ} =
(1 + he/2RY) (1 + hy/2R}) dQy and dQf = dQ) = (1 — W /2RE) (1 — hy/2R}) dQ,. By
assigning the definition of virtual variations for the unknown stress and
displacement variables, the differential system of governing equations and related
boundary conditions for the N; k-layers in each €, domain are found. The
equilibrium and compatibility equations are

dul Kirut + Kizol, = MW + pb

(19)
oot Kisul + KEsek = 0
with boundary conditions
: g . m
geometrical on I}, mechanical on T} (20)

uf = ut or TIESuf + k™6l = TIF“u} + TI5=6k,
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in which the bar denotes assigned. The introduced differential arrays are given by
the following relations:

Ki¥=| (—F.D} + F.A})C: (F,D, + F,A,) HiH}; dz,

J Ax

Kie= | [(—F.Dj + FA})ChF,+ F _FlI+ FFA, — F.FD)] HHjdz,
J Ax

Ko = | {F.F\D,q+ F.FA, + F.F 1 — C&(F .F,D, + F.F,A,)} H: H} dz,

JA

ki = — | FRCEH G, ey
Ay
Ik = f F.I,C,,(F,D, + F,A,)IJH: H} dz,
Ay
Hl;rs = J\ (FthIZCpn + F‘L'FSIIQ) H{;, Hlé dea
Ay

Mkrs = J\ kathIH{;HIE de.
Ay

I is the unit array. As usual in two-dimensional modellings, the integration in the
thickness direction can be made a priori by introducing the following layer integrals
(the further integrals related to the displacement formulation (see next section) are
introduced also);

m

HY HY

(Jk‘ES’ J{;‘L'S, J’E:Ss J{:(‘/Cza Jﬁ;i: JI;;S) = FrFS(lz H;{ca Hk7 ﬁ 5 m 5 HsHﬁ) dZ:
J Ax B a
(oo, I, T, Jug®) = | FoF(1, Hy, H, HyHf) dz,
A
J Ak (22)
(e, I, s I = | FLF (1 HY, H, HAHY) dz,
J A
(JEes, Jhs) = | F. Fy (1, H Hf) dz.
J Ak

As a further step, the differential and algebraic operators can be conveniently split
in the two terms related to the HX and H¥, respectively,

1
(Dp> Aps DnQa Ana Ipa InQ) = ﬁ (D;a A;a ﬁgs Aza Ips InQ)

o

1
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Therefore, the differential operators of equations (21) are written
KL = (= D37 + A1) Cpp [52(D + A7) + J(D) + AD)]
+ (= DYT + AL Gy, [V55(D + A) + I (D] + Al
K = (= Ji°Dy — Ji°Dy + JiPAL + T Ay) G,
+ I+ (AT + JERALT) — JEDiG — JEP DI,
KEs = — Ch (J5=D% + JESDE + JESAL 4 JEsA%) (24)
+ ST+ (JEPAG + JEPAD + T Do + Ji D,
Kis = — JioCh,
T = RIT + T 1) C,p (D + A7) + (JIT + 51T €, (D) + AD),
IS = (JPLT + 510 C,, + J3o15 + JEBTES.
The inertia array is found as
M = Js6, i,j=1,3, (25)

where the Kroneker symbol ;; has been introduced. Cylindrical shell equations are
simply obtained by enforcing R,= oo (or Rgz= oo) while spherical shell
geometries correspond to the case R, = Ry. Neglecting all the curvature terms the
governing equation written for multilayered plates [40] are given as particular
cases.

Explicit forms of the governing equations for each layer can be written by
expanding the introduced subscripts and superscripts in the previous arrays as
follows:

ij>

k=12 ...,N, ==tr,b, s=t,r,b,(r=2, ...,N).

4.2. EQUILIBRIUM EQUATIONS FOR THE k-LAYERS: CLASSICAL DISPLACEMENT
FORMULATIONS
Upon introducing equations (3), (6), and (4) and following the same procedure
developed for the mixed case, (equation (17)) leads to
N,

> <J J out' {(— F.D? + F.AY) [C,,(F,D, + F,A,)
Q J Ak

k=1
+ Cpp(FsDnQ + FsAn + FS,)] +(_ FrDIQ + FrAI + F.,_.:)

X [énp(Fst + FsAp) + Cnn(FsDnQ + FsAn + Fs,)]} Uy d'Qk (26)

+ j J Sut' {F.I}[C,,(F,D, + F,A,) + C,,(FD,o + FA, + F,)]
Iy J A

+ FrIEQ[Cnp(Fst + FsAp) + Cnn(FsDnQ + FsAn + Fsz)]}us drk)

N,

N,
=y j Suf'ptdop + Y f Sut’ p*F Fii*.
Q k=1

k=1 = Q
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The differential system of governing equations and related boundary conditions are
as follows:

dug: Ki®uf = M + pf
geometrical on T'} mechanical on I'}! 27
uf = uf or TI*uf =I5 at.

The introduced differential arrays are
Kk = J {(— F.D} + F.A})[C,,(F,D, + F,A,)
h

+ Cpn(FsDnQ + FsAn + Fsz)] + ( - FtDIQ + FtAI + F‘E;)
X [Cnp(Fst + FsAp) + Cnn(FsDnQ + FsAn =+ Fs)]} H{;Hl;i de, (28)

e = J (F.I;[C,,(FD, + FA,) + C,,(F,D,, + F,A, + F,)]
Ay

+ FrIZQ[Cnp(Fst + FsAp) + Cnn(FsDnQ + FsAn + Fs_)]}Hlot{H’E de-

The definitions given by equations (22) and (23) can be introduced in the previous
arrays in a manner similar to that for the mixed case. For the sake of brevity the
resulting formula are not given.

4.3. ASSEMBLY FROM LAYER TO MULTILAYERED LEVEL

In the previous sections mixed and standard displacement formulations have
been written for the N; independent layers. Multilayered equations can be written
according to the usual variational statements; stiffness and/or compliances related
to the same variables are accumulated in this process. Interlaminar continuity
conditions are imposed at this stage. Details on this procedure can be found in the
papers mentioned earlier. Multilayered arrays are introduced at the very end of the
assemblage. The equilibrium and boundary conditions for the displacement
formulation take the following form:

K, u = Mii + p, (29)
u=1ua or IT,u = Il;u

while for the mixed case, one has
K,u + K,,6, = Mii + p + p.V,

1N,

Kauu + KO'O'GY! = pﬂ'

(30)

while the boundary conditions are
u=ua or ILu+Il,6,=ILa+Il,6,+ q", (31)

pa¥ and pl™ are the arrays obtained from the transverse stress values imposed at
the top/bottom of the plate.
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4.4. CLOSED-FORM SOLUTIONS

The boundary value problem governed by equations (29), (30) and (31) in the
most general case of geometry, boundary conditions and lay-outs, could be solved
by implementing only approximate solution procedures. In order to assess the
proposed models these equations are solved for a special case in which closed-form
solutions are given. The particular case in which the material has the following
properties (as it is the case of cross-ply shells) C14 = C,6 = C36 = C45 = 0 has been
considered, for which Navier-type closed-form solutions can be found by assuming
the following harmonic forms for the applied loadings p* = {pk, p, pt} and
unknown displacement u* = {uf, ufy, ut} and stress of = {ok., o)., ok.,} variables
in each k-layer:

nrfy

mnoy, . ‘
(ula(t,:c O-{l(tz,: plé() = Z (UI;’ Sloctz!a P{:() Ccos Sin b elw,,,,,f’ k = 1a Nl:
m,n k k
. mna nnf, .
(s, o, ph) = 3 (U, S5 P sin ™% cos "Prgiowt - _y by (32)
m,n k bk
Commoy . nafy
(uk, ok, pt) =Y (UL Sk, P¥)sin —Ksin nrfi gioml  p =2 N
m,n Ay by

which correspond to simply supported boundary conditions. a, and b, are the shell
lengths in the o, and f, directions, respectively, while m and n are the corresponding
wave numbers; i = ./ — 1, is the time and w,,, is the circular frequency. Capital
letters at the RHS denote corresponding maximum amplitudes. Upon substitution
of equation (32) the governing equations assume the form of a linear system of
ordinary differential equations in the time domain. The free vibration response
leads to an eigenvalue problem. Upon elimination of the stress unknowns, the
mixed case leads to

||Kuu - (Kuo'(ﬁo'a)_lﬁo’u) - CU,%,,,MH = 0 (33)

The double bar denotes determinant, while the hat indicates arrays constituted by
real numbers. This procedure has been coded for the different case theories and
results are discussed in the next section.

5. RESULTS AND DISCUSSION

The two-dimensional theories derived above have been applied to a large
number of homogeneous and layered, simply supported, plates and cylindrical and
spherical shell problems. The most significant results are described in the following
analysis. Generally, the free vibrational response has been analyzed and compared
to three-dimensional solutions as well as to available refined theories.
A compendium of the acronyms used to denote the theories considered have been
given in Table 1. Continuous reference to these acronyms is made in the subsequent
text.

As a preliminary assessment Tables 2-4 compare the proposed models to
available mixed results. Thin and thick as well as square and rectangular plate



0, IN MULTILAYERED PLATES AND SHELLS 817

TABLE 1

List of the acronyms used to denote plate and shell theories

— Theories from literature

CLT

FSDT

ESLM
C&P1, C&P3
D&P

D&S1, D&S3
IK&T

J&T

LC&W

Mur.

PAR,, HYP,, UNI,
PAR,, HYP,,
R&L

R&P

Ren

T&M3

Z7L

LWM
LWM-1
LWM-2

— Present Theories

D1d, D2d, D3d*
D1i, D2i, D3i*

Mli, M2i, M3i
M1d, M2d, M3d
LW4

Classical Lamination Theory

First order Shear Deformation Theory

Equivalent Single Layer Model

Linear and cubic case after Cho and Parmerter [49]
Dennis and Palazotto [62]

Linear and cubic case after Di Sciuva [63]

IdIbi, Karama and Touratier [51]

Jing and Tzeng [56]

Lo, Christiansen and Wu [44]

Murakami [61]

Timarci and Soldatos [50]
Reddy and Liu [64]

Reddy and Phan [65]

Ren [48]

Toledano and Murakami [52]
Di Sciuva and Carrera [66]
Layer Wise Model

Cho et al. [37]

Nosier et al. [38]

Classical models discarding o,

Classical models in equations (5)

Mixed models in equations (9), (10)

Mixed models discarding o,

Mixed layer-wise model equation (15) relate to N =4

71,2,3 denote linear, parabolic and cubic u-fields, respectively, while d signifies that ¢, has

been discarded.

*i denotes results including o,.

geometries have been analyzed. Cross-ply, symmetrically (N, =3,9) and
unsymmetrically (N; = 4) laminated plates are considered in Tables 2 and 3 and
Figure 3. The mechanical data of the lamina are those used by Pagano [5]:
E\/E; = 25x10° psi, G r/Er = 0:5x 10° psi, Gy7/Er = 0:2x 10° psi, vy = vor
= 0-25, where, following the usual notation [31], L signifies the fiber direction,
T the transverse direction and v, ; is the major Poisson ratio. A good agreement
with the mixed models by Murakami [61] and Toledano and Murakami [52] has
been found. Further, the L W4 analysis matches the exact solution with excellent
accuracy. This result confirms [40-42] the reliability of layer-wise mixed models to
give a three- dimensional description of stress and displacement fields in laminated
plates. LW4 analysis has in fact been taken as a reference solution in the present
work wherever three-dimensional solution are not available. The improvements
introduced by taking o, effects into account are evident for the thick plate cases.
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TABLE 2

Maximum transverse displacement U, = U, x 100E-h*/(pY'a*) (z = 0) of thick plate
in cylindrical bending. Comparison of present analyses to exact solutions by Pagano
[5] and to available mixed results

alh =4 alh =16

Nl=3 Nl=4 Nl=3 Nl=4
Exact 2-887 4-181 1-635 2:556
T&M3 2-881 4-105 1-634 2-519
C&P3 — 4-083 — 2:501
Mur. 2907 3-316 1-636 2:107
C&P1 — 3-316 — 2:107
LC&W 2:687 3-587 1-514 2-242

Present analysis
LW4 2-887 4-181 1-625 2:556

— 0, included
Maii 2-881 4-102 1-634 2:514
M2i 2-831 3-478 1-602 2:195
Mli 2:904 3-:300 1-634 2:095

— 0,, discarded
M3d 2-898 4-124 1-637 2:516
M2d 2-848 3-488 1-605 2-195
Mid 2:904 3-306 1-634 2:098

TABLE 3

Influence of thickness ration on U, = U, x 100E¢h*/(pY'a*) (z=0) and S,. = S,./
(pYa/h), (z = O unless denoted). Rectangular (b = 3a) three-layered plates. Exact
solution by Pagano [5]

U S,

alh 4 10 20 4 z 10 20
Exact 2-820 0919 0610 0-387 — 0-420 0-434
IK&T 2:729 0918 0-609 0-378 — 0-441 0-451
D&S1 2717 0-881 0-599 0-366 — 0-419 —
D&S3 2-757 0919 0610 0-329 — 0-420 —

Ren 2-80 0-920 — 0-317 — 0-415 —

Present analysis
LW4 2-821 0919 0-610 0-387 —023 0-420 0-434
— 0, included

M3i 2-815 0919 0-609 0385 —023 0-420 0434

M2i 2767 0-906 0-606 0393 —023 0-421 0-435

Mili 2-839 0915 0-606 0399 —023 0-420 0434

D3i 2:625 0-867 0-596 0378 —0-17 0-427 0-436

— 0,, discarded
M3d 2-832 0918 0-607 0386  +0-27 0-420 0434
M2d 2:784 0904 0-604 0393 +023 0421 0-435
Mid 2-839 0915 0-606 0394 +023 0-420 0434
D3d 2:644 0-866 0-593 0-377 0 0-427 0-436
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TABLE 4

Ren’s shells problem. Symmetric three layers 90/0/90. Transverse displacement
amplitude. U, = U, x 10E;h*/P} R}, z = 0. Exact solution by Ren [9]

Ry/h 2 4 10 50
Exact 1436 0-457 0-144 0-0808
CLT 0-0799 0-0781 0-0777 0-0776
FSDT — 0-342 0-120 00793
D&P 1-141 0-382 0-128 0-0796
J&T — 0-459 0-142 0-0802
Present analysis
LW4 1-432 0-4580 0-1440 0-0808
— 0, included
M3i 1-412 0-4535 0-1440 0-0808
Mli 1-474 04569 0-1432 0-0805
D3i 1-364 0-4225 0-1363 0-0805
Dli 1112 0-3292 0-1187 0-0795
— 0,, discarded
M3d 1-454 0-4583 0-1428 0-0804
Mi1d 1-464 0-4595 0-1423 0-0804
D3d 1402 04271 0-1351 0-0802
Did 1-159 0-3314 0-1179 0-0795
0-45 T T T T T
0-40
0-35
0-30
025
0-20
0-15
0-10
0-05
0 | | | | |

-04  -02 0 02 04

Figure 3. S../(pYa/h) versus z. Cross-ply, square plate. Data of Table 2 (nine layers case,
a/h = 2:5,100). LW-2'5 —; M3i-2.5 ---; M3d-2:5 -} LW4-10 -y M3i-10 === M3d-10 === .
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Higher order mixed models lead to the best description. A comparison with the
other models of Table 3 (C&P1, C&P3, D&S1, D&S3, IK&T which allow
interlaminar continuous transverse shear stresses) reveals that the extension of such
a continuity to ¢, permits one to conclude that the M3i-model leads to the best
ESL results. These comments are further confirmed by comparing the
M3d,M2d,M1d to M3i,M2i, M1i analysis. Figure 3 makes evident a fundamental
limitation of each laminated theory which neglected o,,. (i) The plate has been
loaded at the top surface: LW4 and M3i analyses show that o,, enforces a
non-symmetrical distribution of transverse shear stress S, versus z. (i) The plate in
symmetrically laminated M3d analysis (as well as any other plate theories in which
0., is discarded) tragically leads to a symmetrical distribution of S, versus z. (iii) It
is concluded that analyses which discard ¢, cannot improve the transverse shear
stress fields in the whole thickness. It should be further noticed that the maximum
value (Sy./pY)max & 04 x 25 ~ 1 is almost coincident to the maximum o, value
(S../PY)max = 1 for the thicker plate case; this is for the simple reason (as stated by
Koiter, see Section 1) that ¢, cannot be neglected in thick plate analysis. Symmetry
is reached for thinner plates. Additional results of .. effects on static analysis of
multilayered plates has been provided by the author in reference [58].

A cross-ply laminated cylindrical panel, loaded by harmonic distribution of
transverse pressure of amplitude P}, applied at the bottom external surface has
been considered in Table 4. Exact solutions were given by Ren [9]. A comparison
on transverse displacement amplitude has been made with results by Jing and
Tzeng [56] that applied the Reissner’s theorem in conjunction to a linear trough
the thickness displacement fields. Comments made above for the plate geometry
can be confirmed for the cylindrical shell panel case.

Free vibration response of isotropic and cross-plied plates and cylindrical shells
is considered in Tables 5-10. Analyses in which o,, is discarded (M3d results)
overestimate the vibration response with respect to M3i case. Higher order
frequencies related to higher modes are considered in Table 5 for an isotropic plate.
It is shown that the influence of ¢,, is very much subordinate to the vibrational
modes. In particular, the first thickness-twist mode seems not to be affected by
refinements introduced in the two-dimensional modellings considered. It should be
noted that the higher order theories D3d can lead to poorer results than D2i and
D1i. This result confirms Koiter’s recommendation [1]. Zigzag and interlaminar
continuity are not applicable to this problem. Mixed results, are in fact not given.

Table 6 compares the present results with those by Nosier et al. [38] for a
four-layered cross-ply plate. Fundamental and higher frequencies related to two
half-waves modes are considered for a symmetrically cross-ply laminated plate.
LW4 accuracy with respect to exact solution is confirmed. Only nine frequencies
can be found for the D3d analysis. M3i analysis leads to the best ESLM description.
It is to be noted that M3d results can be better or worst than D3i ones; it is not
predictable a priori whether refinements of classical theories discarding o, (such as
M3d case) will improve classical analysis (such as M3i case) including o...

A comparison to the recent exact solution by Ye and Soldatos [ 14] and to several
refined models quoted in reference [50] has been provided in Table 7. A
three-layered, moderately thick cylindrical shell has been considered. Good
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TABLE 5

Comparison of present analysis to exact by Srinivas and alii [6] and to other refined

models on the lowest five circular frequency parameter wh./p/G. Simply supported

square isotropic plates (v = 0-3). A and S denote modes which are antisymmetric and
symmetric about the mid-plane. 1-S and 11-S are both thickness-twist modes

Model I-A I-S I1-S I1-A I1-A
mh/a = 0-1, nhja = 0-1
Exact 0-0931 0-4443 0-7498 3-1729 3-2465
LWM-1 0-0931 0-4443 0-7499 3-1736 3-2496
R&P 0-0931 — — — —
— Present analysis
LW4 0-0931 0-4443 0-7498 3-1726 3-2465
— 0, included
D3i 0-0932 0-4443 0-7498 3-1737 3-2485
D2i 0-0934 0-4443 0-7498 3-4924 3-5699
D1i 0-1029 0-4443 0-7502 3-4924 3-5883
— 0,, discarded
D3d 0-1024 0-4443 0-8311 3-1737 32735
D2d 0-1029 0-4443 0-8311 3-4925 3-5895
Did 0-1029 0-4443 0-8312 3-4250 3-5880
mh/a = 0-2, nhja = 0-2
Exact 0-3421 0-8886 14923 3-2648 3-5298
LWM-1 0-3416 0-8886 1-4932 3-2656 3-5398
R&P 0-3411 — — — —
— Present analysis
LW4 0-3421 0-8886 1-4923 3-2656 3-5309
— 0, included
D3i 0-3421 0-8886 14923 3-2657 3-5355
D2i 0-3456 0-8886 1-4925 3-4555 3-5763
D1i 0-3763 0-8886 1-4959 3-5763 37627
— 0,, discarded
D3d 0-3701 0-8886 1-6623 3-2656 3:6255
D2d 0-3763 0-8886 1-6623 3-5763 39257
Did 0-3763 0-8886 16623 3-5763 37627

agreement between present mixed analysis and exact solution has to be registered.
Better results with respect to standard classical displacement formulation are
found. The value quoted in brackets accompanying some of the numerical results in
Table 7 indicates the circumferential wave number, n, for which the fundamental
frequency was detected. All the theories considered in reference [50] neglect
transverse normal stress effects. Uniform UNI, parabolic PAR and hyperbolic
HYP transverse shear stress distribution in the thickness shell direction where
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TABLE 6

Comparison of present mixed analysis to exact [6] and to other refined models on the

lowest 10 circular frequency parameters wh./p/Er Simply supported square plates

a/h = 10. Cross-ply skew-symmetric laminates 0/90/0/90 E; = 25-1 x 10° psi, E =

4-8 x 10° psi, E. = 075 x10° psi, Gy = 1:36 x 10° psi, G, = 1-2x 10° psi, Gy, =
0.47 x 10° psi, v = 0:036, v, = 0-25, vpr = 0-171

Nosier et al. 1993 Present
Exact LWM-2 R&P Lw4 M3i M3d D3i D3d

m=n=1
006621 006622 006789  0:06621 006627 006635 0-06774  0-06781
0-54596  0-54600 054845  0-54596  0-54729 054733  0-54808  0-54808
0-59996  0-59999 060261 0-59996  0-60119 060263  0:60197  0-60340
1-2425 1-2435 1-4237 1-2425 1-2436 1-3055 1-2438 1-4201
1-2988 1-2996 1-4535 1-2987 1-3337 1-3357 1-4204 1-4504

1-3265 1-3274 — 1-3265 1-3055 2:6920 1-4482 29165

2:3631 2:3698 — 2:3631 2:6914 2:7018 29145 2:9253

2-3789 2-:3856 — 2:3789 2:7066 4-9080 29305 56706

24911 2:4983 — 2:4911 2:8356 4-9095 3-0745 56757

3-6661 3-6939 — 2:6662 49061 59554 51758 —
m=2,n=1

0-15194  0-15198 0-16065 0-15194 015224  0-15231  0-15947  0-15953
0-63875  0-63879  0-64119  0-63875 0:63999  0:64052  0-64072  0-64122
1-0761 1-0765 1-09931  1-0761 1-0869 1-0902 1-0924 1-0958
1-2417 1-2426 1-4651 1-2417 12434 1-3499 1-2439 1-4616
1-3425 1-3433 17525 1-3425 1-3492 1-6566 1-4611 1-7327

1-6323 1-6336 — 1-6323 1-6536 27117 17295 2:9347
2-3869 2-3936 — 2-3869 2-7128 2-8525 2-9349 3-0713
2-4844 2:4917 — 2-4844 2-8281 49172 3-:0582 5:6802
2-5614 2-5678 — 2-5614 2-8690 4-9848 3-1056 57638
3-6778 3-7051 — 3:6778 49171 5-9663 5-1807 —

considered as well as the two cases of interlaminar discontinuous 4 and continuous
s shear stresses (see reference [50] for further details). Uniform distribution cases
do not fulfill static conditions at the top and bottom shell surfaces. ZZL results
refer to analysis in reference [66] which is the same as that of UNI,. The
fundamental mode, e.g. n-values can be erroneously predicted by simplified
analysis. The importance of fulfilling the interlaminar transverse shear stress
continuity has been confirmed by the present analysis. Nevertheless, the role played
by the transverse normal stress should be underlined. Such a role could become
more predominant for thicker shells. Comments made in the above discussion of
Table 6 results have been confirmed by Table 7.

A few further parametric studies have been presented to provide some insight
into the effects of variation in material and geometric characteristics of laminated
shells on their vibration characteristic. Tables 8 and 9 consider laminated circular
cylinders having both symmetric and skew-symmetric lamination with respect to
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TABLE 7

Effect of radii to length ratio R/a on w x a*./p/h*Er. Comparison to exact solution

by Ye and Soldatos [14] and to other refined analyses. alh = 10, m = 1, n = 2 unless

given in brackets. Three-layered ringed shell 0/90/0, hy = hy = h,/2. E;/E; = 25,
Grr/Er =05,Grp/Er =02, vir = vppr = 025

Ry/a 5 10 50 100
Exact 10305 10-027%2 9-834%4 9-815
PAR 10-496 10-223 10-0322° 10-013
HYP, 10-496 10-226 10-036%° 10-018
UNI, 10-462 10-187 9-99628 9-977
PAR, 10-329 10-051 9-8592° 9-840
HYP, 10-328 10-050 9-8582° 9-839

771 10-462'4 10-187%4 9-996'° 99714

— Present analysis

LW4 10305 10:027%2 9-834%° 9-815

M3i 10-309'4 10-03022 9-837%¢ 9-818

M3d 10324 1004322 9-847%6 9-828

M1i 10-328'4 10-046%2 9-850%° 9-831

Mid 10-328'% 10-04622 9-850%° 9-831

D3i 10-453 10-179%2 9-9882° 9-969

D3d 10-470'4 10-19322 9-9982¢ 9-979

D1i 113184 11-0632° 10-8792° 10-862

Did 1131814 11-064%° 10-880%° 10-862

the middle surface for which approximate three dimensional solution were given by
Noor and Rarig [11]. The fibers of the different layers alternate between the
longitudinal o and circumferential f directions, with the fibers of the top layer
running in the circumferential direction. The total thickness of the circumferential
and longitudinal layers in each shell was the same. The material characteristics of
the individual layers were taken to be those of typical of high-modulus fibrous
composites, namely Gy r/Er = G,/Er = 06, Gyp/Ep = 0-5, vy = vppr = 0:25. The
degree of orthotropy of the individual layers E; /Er, the thickness ratio Ry/h as well
as circumferential modes n were varied in the investigations. Accurate description
of very thick shells with increasing number of layers demand a layer-wise
description. Note that D3i results are in some case more accurate than those related
M3d analyses. In such a case ¢,, plays a predominant role with respect to zigzag
effects and interlaminar equilibria. It is concluded that the approximation
introduced by discarding ¢,, are very much influenced by geometrical and
mechanical parameters as well as by laminate stacking sequence.

The problems investigated previously have been restricted to a laminated
structure with almost constant transverse mechanical properties in the thickness
direction (the Young’s modulus is constant in the z-shell direction and the variation
of Cy; and C,5 in the same direction is at least one order of magnitude less than the
other layer constant). Previous plate analyses [ 58] showed that the zigzag form of
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TABLE 8

Effect of degree of orthotropy of the individual layers E;/Ey on w x 10./ph*/Ey.
Comparison to 3D solutions by Noor and Rarig [11]. h/R; = 02, a/Ry = 1,m = 1,

n=4
N, Ei/Er
3 10 40

3D 2 23141 2-:5464 29262
LW4 23141 2-:5464 2:9263
M3i 23152 2:5619 29791
M3d 2-3721 2:5966 2:9999
D3i 2:3153 2:5640 3-0049
D3d 2:3722 2:5986 3-:0247
3D 3 2:3173 26542 31675
LW4 2:3173 26542 3-1998
M3i 2-:3226 2:6659 3-1998
M3d 2:3718 2:6943 32221
D3i 2:3227 2:6668 3-2096
D3d 2-3719 2:6953 3-2316
3D 5 2:3767 2-8245 3-4631
LW4 23767 2-8245 3-4633
M3i 2-:3807 2-8336 3-4887
M3d 2:4268 2-8555 3-5038
D3i 2-3816 2:8371 3-5011
D3d 2:4278 2-8591 3-5163
3D 10 2:4357 29856 3-7506
LW4 2-4357 29856 37507
M3i 2:4397 2:9945 37692
M3d 2:4849 3-:0133 37784
D3i 2-4404 2:9967 37763
D3d 2:4857 3-0155 3-7855

u, had in fact barely been exhibited by the exact analysis. In order to investigate
transverse stress effects for highly transverse anisotropic structures a multilayered
plate and spherical panel with non-constant distribution of Young modulus E, in
the thickness direction has been considered in Figure 4 and Table 10. Three layered
thick and thin flat and spherical panels constituted by isotropic (v = 0-3) layers has
been investigated. The panels are unsymmetrically laminated with E'/E? = 10;
E3/E* = 100 where E* (k = 1,2, 3) are the Young’s moduli of the three layers. The
same ratios have been used for mass density. E* and p? have been used in the
quoted non-dimensioned amplitudes. Figure 4 shows an evident zigzag behaviour
for the transverse displacement in the thickness spherical shell directions. Table 10
shows that the interlaminar equilibria and zigzag effect are more significant with
respect to the previously cited results. D3i analyses are never more accurate than
M3d analyses.
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TABLE 9

Effect of thickness to radii ratio h/Rp on w x 10,/ ph*/Ey. Comparison to 3D solutions
by Noor and Rarig [11]. E;/Er = 30,a/R; =1,m =1

2 4 6

Nl - 2
3D 0-05 0-8165 0-5385 04218
LW4 0-8165 0-5385 0-4218
M3i 0-8163 0-5391 04227
M3d 0-8177 0-5404 04245
D3i 0-8164 0-5391 0-4228
D3d 0-8177 0-5404 04246
3D 0-40 7-5953 6:9568 7-9209
LWw4 7-5972 6:9575 7-9205
M3i 77327 7-1734 81133
M3d 7-7569 7-2205 8:1908
D3i 7-8030 7-2619 8-2181
D3d 7-8208 7-3046 82919

Nl B 10
3D 0-05 0-8410 0-5832 0-5027
LW4 0-8410 0-5832 0-5027
M3i 0-8410 0-5834 0-5029
M3d 0-8415 0-5842 0-5045
D3i 0-8410 0-5834 0-5030
D3d 0-8415 0-5842 0-5046
3D 0-40 86111 84732 9-8040
LW4 86117 84736 9-8043
M3i 8-:6765 8-:5730 9-9352
M3d 8-6778 8-:5939 9-9822
D3i 8-:6896 8-:5957 9-9643
D3d 8-6907 8-6158 10-0103

TABLE 10

Effect of thickness ratio a/h on w x 1. E4./p*h?*/E%. Three layered, squared flat and
spherical panels (R,/a = 2-5) made of isotropic layers (v =03). m=n=1

a/h 4 10 100
Flat panels
LW4 1695-0 3854 4:634
M3i 1717-0 3864 4-634
M3d 1825-0 3953 4:635
D3i 24210 4489 4-644
D3d 26580 4555 4-645
Spherical panels
LW4 1954-0 560-9 41-69
M3i 20070 5662 41-70
M3d 21130 5789 41-72
D3i 2501-0 612-5 41-70

D3d 2904-0 6279 4172
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6. CONCLUDING REMARKS

The mixed theory originally proposed by Toledano and Murakami has been
reformulated and extended to dynamic analyses of plates and double-curved shells.
Transverse normal stress effects have been compared and evaluated by allowing
different polynomial orders in the displacement expansions. Classical theories have
been considered for comparison purpose. From the investigation carried out the
following main remarks can be made.

1. The a priori fulfillment of the interlaminar continuity for ¢,, makes mixed
models more attractive than other available models which violate such a
continuity.

2. Koiter’s recommendation [1] concerning isotropic shells: a refinement of
Love’s first approximation theory is indeed meaningless, in general, unless the
effects of transverse shear and normal stresses are taken into account at the same
time, could be re-written for the case of multilayered shells as: a refinement of
...... unless the effects of interlaminar continuous transverse shear and normal
stresses are taken into account at the same time.

3. In any case a very accurate description of the vibrational response of highly
anisotropic, thick and very thick z-shells requires layer-wise description.
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